File size: 5,265 Bytes
49bacc7
 
 
 
e2c142c
49bacc7
 
 
 
 
bb6a44d
49bacc7
6db31f1
831bb68
49bacc7
 
 
 
 
 
bb6a44d
49bacc7
 
bb6a44d
49bacc7
e312946
49bacc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c142c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49bacc7
 
 
 
 
2c8bd66
 
49bacc7
 
 
 
 
 
 
 
 
0fe78a9
49bacc7
 
 
 
 
 
8855b6e
2c8bd66
49bacc7
 
 
 
86ba7d6
49bacc7
 
 
 
e2c142c
 
 
2c8bd66
 
 
e2c142c
49bacc7
 
 
e2c142c
 
c065ffa
 
 
 
 
 
 
 
 
 
 
ad0ebbe
e2c142c
 
 
 
 
c065ffa
 
49bacc7
b1efd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49bacc7
b1efd98
c065ffa
49bacc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Streamlit app for Presidio."""

import json
from json import JSONEncoder
from annotated_text import annotated_text
import pandas as pd
import streamlit as st
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_anonymizer import AnonymizerEngine

from flair_recognizer import FlairRecognizer

import spacy
spacy.cli.download("en_core_web_lg")

# Helper methods
@st.cache(allow_output_mutation=True)
def analyzer_engine():
    """Return AnalyzerEngine."""

    flair_recognizer = FlairRecognizer()
    
    registry = RecognizerRegistry()
    registry.add_recognizer(flair_recognizer)
    registry.load_predefined_recognizers()
    registry.remove_recognizer("SpacyRecognizer")
    
    analyzer = AnalyzerEngine(registry=registry)
    return analyzer

    
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
    """Return AnonymizerEngine."""
    return AnonymizerEngine()


def get_supported_entities():
    """Return supported entities from the Analyzer Engine."""
    return analyzer_engine().get_supported_entities()


def analyze(**kwargs):
    """Analyze input using Analyzer engine and input arguments (kwargs)."""
    if "entities" not in kwargs or "All" in kwargs["entities"]:
        kwargs["entities"] = None
    return analyzer_engine().analyze(**kwargs)


def anonymize(text, analyze_results):
    """Anonymize identified input using Presidio Abonymizer."""

    res = anonymizer_engine().anonymize(text, analyze_results)
    return res.text

def annotate(text, st_analyze_results, st_entities):
    tokens = []
    # sort by start index
    results = sorted(st_analyze_results, key=lambda x: x.start)
    for i, res in enumerate(results):
        if i == 0:
            tokens.append(text[:res.start])

        # append entity text and entity type
        tokens.append((text[res.start: res.end], res.entity_type))

        # if another entity coming i.e. we're not at the last results element, add text up to next entity
        if i != len(results) - 1:
            tokens.append(text[res.end:results[i+1].start])
        # if no more entities coming, add all remaining text
        else:
            tokens.append(text[res.end:])
    return tokens

st.set_page_config(page_title="Presidio demo (English)", layout="wide")

# Side bar
st.sidebar.markdown(
"""
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol trace data generated by [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and rule-based classifiers from [presidio](https://aka.ms/presidio). 
"""
)

st_entities = st.sidebar.multiselect(
    label="Which entities to look for?",
    options=get_supported_entities(),
    default=list(get_supported_entities()),
)

st_threshold = st.sidebar.slider(
    label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)

st_return_decision_process = st.sidebar.checkbox("Add analysis explanations in json")

st.sidebar.info(
    "Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
    "For more info visit [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and [aka.ms/presidio](https://aka.ms/presidio)"
)


# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer and loading Privy-trained model...")
engine = analyzer_engine()
analyzer_load_state.empty()


st_text = st.text_area(
    label="Type in some text",
    value=
    "SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
    "\n\n"
    "{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
    height=200,
)

# After
st.subheader("Analyzed")
with st.spinner("Analyzing..."):
    st_analyze_results = analyze(
        text=st_text,
        entities=st_entities,
        language="en",
        score_threshold=st_threshold,
        return_decision_process=st_return_decision_process,
    )
    annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
    # annotated_tokens
    annotated_text(*annotated_tokens)

# vertical space
st.text("")
    
st.subheader("Anonymized")

with st.spinner("Anonymizing..."):
    st_anonymize_results = anonymize(st_text, st_analyze_results)
    st_anonymize_results

# table result
st.subheader("Detailed Findings")
if st_analyze_results:
    res_dicts = [r.to_dict() for r in st_analyze_results]
    for d in res_dicts:
        d['Value'] = st_text[d['start']:d['end']]
    df = pd.DataFrame.from_records(res_dicts)
    df = df[["entity_type", "Value", "score", "start", "end"]].rename(
        {
            "entity_type": "Entity type",
            "start": "Start",
            "end": "End",
            "score": "Confidence",
        },
        axis=1,
    )

    st.dataframe(df, width=1000)
# table result
else:
    st.text("No findings")

# json result
class ToDictListEncoder(JSONEncoder):
    """Encode dict to json."""

    def default(self, o):
        """Encode to JSON using to_dict."""
        if o:
            return o.to_dict()
        return []


if st_return_decision_process:
    st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))