Spaces:
Build error
Build error
File size: 4,990 Bytes
49bacc7 e2c142c 49bacc7 bb6a44d 49bacc7 bb6a44d 49bacc7 bb6a44d 49bacc7 e2c142c 49bacc7 ecbdea7 49bacc7 10551c1 49bacc7 86ba7d6 49bacc7 e2c142c 49bacc7 e2c142c 49bacc7 e2c142c 49bacc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
"""Streamlit app for Presidio."""
import json
from json import JSONEncoder
from annotated_text import annotated_text
import pandas as pd
import streamlit as st
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
from presidio_anonymizer import AnonymizerEngine
from flair_recognizer import FlairRecognizer
import spacy
spacy.cli.download("en_core_web_lg")
# Helper methods
@st.cache(allow_output_mutation=True)
def analyzer_engine():
"""Return AnalyzerEngine."""
flair_recognizer = FlairRecognizer()
registry = RecognizerRegistry()
registry.add_recognizer(flair_recognizer)
registry.load_predefined_recognizers()
analyzer = AnalyzerEngine(registry=registry)
return analyzer
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
return analyzer_engine().analyze(**kwargs)
def anonymize(text, analyze_results):
"""Anonymize identified input using Presidio Abonymizer."""
res = anonymizer_engine().anonymize(text, analyze_results)
return res.text
def annotate(text, st_analyze_results, st_entities):
tokens = []
# sort by start index
results = sorted(st_analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
return tokens
st.set_page_config(page_title="Presidio demo (English)", layout="wide")
# Side bar
st.sidebar.markdown(
"""
Anonymize PII entities in text with [presidio](https://aka.ms/presidio), spaCy and a [PII detection model](https://huggingface.co/beki/flair-pii-english) trained on protocol trace data generated by [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy).
"""
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
st_threhsold = st.sidebar.slider(
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)
st_return_decision_process = st.sidebar.checkbox("Add analysis explanations in json")
st.sidebar.info(
"Presidio is an open source framework for PII detection and anonymization. Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc)"
"For more info visit [aka.ms/presidio](https://aka.ms/presidio) and [privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy)"
)
# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer and loading Privy-trained model...")
engine = analyzer_engine()
analyzer_load_state.empty()
st_text = st.text_area(
label="Type in some text",
value=
"like a phone number (212-141-4544) "
"or a name (Lebron James).",
height=200,
# label_visibility="collapsed",
)
# After
st.subheader("Analyzed")
with st.spinner("Analyzing..."):
st_analyze_results = analyze(
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
# annotated_tokens
annotated_text(*annotated_tokens)
st.text("")
st.subheader("Anonymized")
with st.spinner("Anonymizing..."):
st_anonymize_results = anonymize(st_text, st_analyze_results)
st_anonymize_results
# table result
st.subheader("Findings")
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df = df[["entity_type", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
st.dataframe(df, width=1000)
else:
st.text("No findings")
# json result
class ToDictListEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
if o:
return o.to_dict()
return []
if st_return_decision_process:
st.json(json.dumps(st_analyze_results, cls=ToDictListEncoder))
|