Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
col_count=(1, 'fixed'),
|
13 |
-
datatype='str',
|
14 |
-
interactive=True,
|
15 |
-
scale=4,
|
16 |
-
)
|
17 |
-
submit = gr.Button('Обработать', scale=1)
|
18 |
-
with gr.Group():
|
19 |
-
with gr.Row():
|
20 |
-
checkbox = gr.Checkbox(
|
21 |
-
label='Множественная положительная классификация',
|
22 |
-
interactive=True,
|
23 |
-
info='',
|
24 |
-
)
|
25 |
-
dropdown = gr.Dropdown(
|
26 |
-
label='Number of Labels to predict',
|
27 |
-
multiselect=False,
|
28 |
-
value=1,
|
29 |
-
choices=list(range(1,6),),
|
30 |
-
interactive=False,
|
31 |
-
)
|
32 |
-
result = gr.Label(
|
33 |
-
label='Результат классификации',
|
34 |
-
visible=False,
|
35 |
-
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
interactive=ob,
|
41 |
-
value=1,
|
42 |
-
)
|
43 |
-
return gr.Dropdown(interactive=ob)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
text,
|
48 |
-
list(df['Labels']),
|
49 |
-
multi_label=True,
|
50 |
-
)
|
51 |
-
return gr.Label(
|
52 |
-
visible=True,
|
53 |
-
num_top_classes=int(label_no),
|
54 |
-
value={i: j for i, j in zip(output['labels'], output['scores'])}
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7")
|
5 |
|
6 |
+
def classify(text, *labels):
|
7 |
+
labels = [label for label in labels if label]
|
8 |
+
if not text or not labels:
|
9 |
+
return []
|
10 |
+
result = classifier(text, candidate_labels=labels)
|
11 |
+
return list(zip(result['labels'], result['scores']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def dynamic_ui(labels):
|
14 |
+
inputs = [gr.Textbox(label=f"Class {i+1}", value=label) for i, label in enumerate(labels)]
|
15 |
+
return inputs
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
with gr.Blocks() as demo:
|
18 |
+
gr.Markdown("## Zero-Shot Text Classification")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
text_input = gr.Textbox(label="Text for classification")
|
21 |
+
|
22 |
+
labels = [""]
|
23 |
+
classes_container = gr.Column(dynamic_ui(labels))
|
24 |
+
|
25 |
+
def add_class():
|
26 |
+
labels.append("")
|
27 |
+
return dynamic_ui(labels)
|
28 |
+
|
29 |
+
def remove_class():
|
30 |
+
if labels:
|
31 |
+
labels.pop()
|
32 |
+
return dynamic_ui(labels)
|
33 |
+
|
34 |
+
add_button = gr.Button("Add Class")
|
35 |
+
remove_button = gr.Button("Remove Class")
|
36 |
+
add_button.click(add_class, [], classes_container)
|
37 |
+
remove_button.click(remove_class, [], classes_container)
|
38 |
+
|
39 |
+
output = gr.Dataframe(headers=["Class", "Probability"], label="Classification Results")
|
40 |
+
button = gr.Button("Classify")
|
41 |
+
|
42 |
+
button.click(classify, inputs=[text_input] + classes_container.children, outputs=output)
|
43 |
+
|
44 |
+
demo.launch()
|