Update app.py
Browse files
app.py
CHANGED
@@ -153,7 +153,7 @@ from typing import List, Dict
|
|
153 |
import logging
|
154 |
import traceback
|
155 |
|
156 |
-
# Set up logging to help us
|
157 |
logging.basicConfig(
|
158 |
level=logging.INFO,
|
159 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
@@ -163,42 +163,40 @@ logger = logging.getLogger(__name__)
|
|
163 |
class MedicalAssistant:
|
164 |
def __init__(self):
|
165 |
"""
|
166 |
-
Initialize
|
167 |
-
This
|
168 |
-
for better memory efficiency while maintaining good performance.
|
169 |
"""
|
170 |
try:
|
171 |
-
logger.info("Starting model initialization...")
|
172 |
|
173 |
-
#
|
174 |
self.model_name = "emircanerol/Llama3-Med42-8B-4bit"
|
175 |
self.max_length = 2048
|
176 |
|
177 |
-
#
|
178 |
-
# The pipeline handles tokenizer and model loading automatically
|
179 |
-
logger.info("Initializing pipeline...")
|
180 |
-
self.pipe = pipeline(
|
181 |
-
"text-generation",
|
182 |
-
model=self.model_name,
|
183 |
-
token=os.getenv('HUGGING_FACE_TOKEN'),
|
184 |
-
device_map="auto",
|
185 |
-
torch_dtype=torch.float16, # Use half precision for 4-bit model
|
186 |
-
load_in_4bit=True # Enable 4-bit quantization
|
187 |
-
)
|
188 |
-
|
189 |
-
# Load tokenizer separately for more control over text processing
|
190 |
logger.info("Loading tokenizer...")
|
191 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
192 |
self.model_name,
|
193 |
-
token=os.getenv('HUGGING_FACE_TOKEN')
|
194 |
-
trust_remote_code=True
|
195 |
)
|
196 |
|
197 |
-
#
|
198 |
if self.tokenizer.pad_token is None:
|
199 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
logger.info("Medical Assistant initialized successfully!")
|
202 |
|
203 |
except Exception as e:
|
204 |
logger.error(f"Initialization failed: {str(e)}")
|
@@ -207,44 +205,47 @@ class MedicalAssistant:
|
|
207 |
|
208 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
209 |
"""
|
210 |
-
Generate
|
211 |
-
This method
|
212 |
"""
|
213 |
try:
|
214 |
logger.info("Preparing message for generation")
|
215 |
|
216 |
-
# Create
|
217 |
-
system_prompt = """You are a medical AI assistant
|
218 |
-
|
219 |
-
|
220 |
-
consulting healthcare providers for specific medical advice."""
|
221 |
|
222 |
-
# Format
|
223 |
messages = [
|
224 |
{"role": "system", "content": system_prompt},
|
225 |
{"role": "user", "content": message}
|
226 |
]
|
227 |
|
228 |
-
# Add chat history if available
|
229 |
if chat_history:
|
230 |
-
|
|
|
|
|
231 |
messages.append({
|
232 |
"role": "user" if chat["role"] == "user" else "assistant",
|
233 |
"content": chat["content"]
|
234 |
})
|
235 |
|
236 |
-
logger.info("Generating response")
|
237 |
-
|
|
|
238 |
response = self.pipe(
|
239 |
messages,
|
240 |
-
max_new_tokens=
|
241 |
do_sample=True,
|
242 |
temperature=0.7,
|
243 |
top_p=0.95,
|
244 |
-
|
|
|
245 |
)[0]["generated_text"]
|
246 |
|
247 |
-
# Clean up
|
248 |
response = response.split("assistant:")[-1].strip()
|
249 |
|
250 |
logger.info("Response generated successfully")
|
@@ -255,14 +256,14 @@ class MedicalAssistant:
|
|
255 |
logger.error(traceback.format_exc())
|
256 |
return f"I apologize, but I encountered an error: {str(e)}"
|
257 |
|
258 |
-
# Initialize
|
259 |
assistant = None
|
260 |
|
261 |
def initialize_assistant():
|
262 |
-
"""Initialize the assistant with
|
263 |
global assistant
|
264 |
try:
|
265 |
-
logger.info("Attempting to initialize assistant")
|
266 |
assistant = MedicalAssistant()
|
267 |
logger.info("Assistant initialized successfully")
|
268 |
return True
|
@@ -272,7 +273,7 @@ def initialize_assistant():
|
|
272 |
return False
|
273 |
|
274 |
def chat_response(message: str, history: List[Dict]):
|
275 |
-
"""Handle chat interactions with error recovery"""
|
276 |
global assistant
|
277 |
|
278 |
if assistant is None:
|
@@ -287,14 +288,12 @@ def chat_response(message: str, history: List[Dict]):
|
|
287 |
logger.error(traceback.format_exc())
|
288 |
return f"I encountered an error: {str(e)}"
|
289 |
|
290 |
-
# Create
|
291 |
demo = gr.ChatInterface(
|
292 |
fn=chat_response,
|
293 |
-
title="Medical Assistant (
|
294 |
-
description="""This medical assistant
|
295 |
-
|
296 |
-
guidance and information about health-related queries while
|
297 |
-
maintaining professional medical standards.""",
|
298 |
examples=[
|
299 |
"What are the symptoms of malaria?",
|
300 |
"How can I prevent type 2 diabetes?",
|
@@ -302,7 +301,7 @@ demo = gr.ChatInterface(
|
|
302 |
]
|
303 |
)
|
304 |
|
305 |
-
# Launch
|
306 |
if __name__ == "__main__":
|
307 |
-
logger.info("Starting the application")
|
308 |
demo.launch()
|
|
|
153 |
import logging
|
154 |
import traceback
|
155 |
|
156 |
+
# Set up logging to help us understand what's happening in our application
|
157 |
logging.basicConfig(
|
158 |
level=logging.INFO,
|
159 |
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
|
163 |
class MedicalAssistant:
|
164 |
def __init__(self):
|
165 |
"""
|
166 |
+
Initialize a basic medical assistant for CPU-only environments.
|
167 |
+
This version uses standard model loading without quantization for maximum compatibility.
|
|
|
168 |
"""
|
169 |
try:
|
170 |
+
logger.info("Starting basic model initialization...")
|
171 |
|
172 |
+
# Define our model configuration
|
173 |
self.model_name = "emircanerol/Llama3-Med42-8B-4bit"
|
174 |
self.max_length = 2048
|
175 |
|
176 |
+
# First load the tokenizer since it's lighter on memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
logger.info("Loading tokenizer...")
|
178 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
179 |
self.model_name,
|
180 |
+
token=os.getenv('HUGGING_FACE_TOKEN')
|
|
|
181 |
)
|
182 |
|
183 |
+
# Handle padding token setup
|
184 |
if self.tokenizer.pad_token is None:
|
185 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
186 |
+
|
187 |
+
# Initialize pipeline with basic CPU settings
|
188 |
+
logger.info("Initializing CPU-based pipeline...")
|
189 |
+
self.pipe = pipeline(
|
190 |
+
"text-generation",
|
191 |
+
model=self.model_name,
|
192 |
+
token=os.getenv('HUGGING_FACE_TOKEN'),
|
193 |
+
device_map="cpu", # Explicitly use CPU
|
194 |
+
torch_dtype=torch.float32, # Use standard precision
|
195 |
+
use_safetensors=True, # Enable safetensors for better memory handling
|
196 |
+
# Removed all quantization settings
|
197 |
+
)
|
198 |
|
199 |
+
logger.info("Medical Assistant initialized successfully in basic CPU mode!")
|
200 |
|
201 |
except Exception as e:
|
202 |
logger.error(f"Initialization failed: {str(e)}")
|
|
|
205 |
|
206 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
207 |
"""
|
208 |
+
Generate responses using basic CPU-friendly settings.
|
209 |
+
This method focuses on stability over speed, using conservative parameters.
|
210 |
"""
|
211 |
try:
|
212 |
logger.info("Preparing message for generation")
|
213 |
|
214 |
+
# Create our medical context prompt
|
215 |
+
system_prompt = """You are a medical AI assistant trained on medical knowledge.
|
216 |
+
Provide accurate, professional medical guidance while acknowledging limitations.
|
217 |
+
Always recommend consulting healthcare providers for specific medical advice."""
|
|
|
218 |
|
219 |
+
# Format our conversation for the model
|
220 |
messages = [
|
221 |
{"role": "system", "content": system_prompt},
|
222 |
{"role": "user", "content": message}
|
223 |
]
|
224 |
|
225 |
+
# Add recent chat history if available
|
226 |
if chat_history:
|
227 |
+
# Only keep recent history to manage memory
|
228 |
+
recent_history = chat_history[-2:] # Keep last 2 exchanges
|
229 |
+
for chat in recent_history:
|
230 |
messages.append({
|
231 |
"role": "user" if chat["role"] == "user" else "assistant",
|
232 |
"content": chat["content"]
|
233 |
})
|
234 |
|
235 |
+
logger.info("Generating response with basic settings")
|
236 |
+
|
237 |
+
# Generate with conservative parameters
|
238 |
response = self.pipe(
|
239 |
messages,
|
240 |
+
max_new_tokens=100, # Conservative token limit
|
241 |
do_sample=True,
|
242 |
temperature=0.7,
|
243 |
top_p=0.95,
|
244 |
+
num_beams=1, # Single beam for simplicity
|
245 |
+
pad_token_id=self.tokenizer.pad_token_id
|
246 |
)[0]["generated_text"]
|
247 |
|
248 |
+
# Clean up our response
|
249 |
response = response.split("assistant:")[-1].strip()
|
250 |
|
251 |
logger.info("Response generated successfully")
|
|
|
256 |
logger.error(traceback.format_exc())
|
257 |
return f"I apologize, but I encountered an error: {str(e)}"
|
258 |
|
259 |
+
# Initialize our assistant
|
260 |
assistant = None
|
261 |
|
262 |
def initialize_assistant():
|
263 |
+
"""Initialize the assistant with careful error handling"""
|
264 |
global assistant
|
265 |
try:
|
266 |
+
logger.info("Attempting to initialize basic CPU assistant")
|
267 |
assistant = MedicalAssistant()
|
268 |
logger.info("Assistant initialized successfully")
|
269 |
return True
|
|
|
273 |
return False
|
274 |
|
275 |
def chat_response(message: str, history: List[Dict]):
|
276 |
+
"""Handle chat interactions with proper error recovery"""
|
277 |
global assistant
|
278 |
|
279 |
if assistant is None:
|
|
|
288 |
logger.error(traceback.format_exc())
|
289 |
return f"I encountered an error: {str(e)}"
|
290 |
|
291 |
+
# Create our Gradio interface
|
292 |
demo = gr.ChatInterface(
|
293 |
fn=chat_response,
|
294 |
+
title="Medical Assistant (Basic CPU Version)",
|
295 |
+
description="""This medical assistant provides medical guidance using a basic CPU configuration.
|
296 |
+
Responses may take longer but will be stable and reliable.""",
|
|
|
|
|
297 |
examples=[
|
298 |
"What are the symptoms of malaria?",
|
299 |
"How can I prevent type 2 diabetes?",
|
|
|
301 |
]
|
302 |
)
|
303 |
|
304 |
+
# Launch our interface
|
305 |
if __name__ == "__main__":
|
306 |
+
logger.info("Starting the basic CPU application")
|
307 |
demo.launch()
|