Update app.py
Browse files
app.py
CHANGED
@@ -164,19 +164,21 @@ class MedicalAssistant:
|
|
164 |
def __init__(self):
|
165 |
"""
|
166 |
Initialize the medical assistant with CPU-friendly settings.
|
167 |
-
We
|
168 |
"""
|
169 |
try:
|
170 |
logger.info("Starting model initialization...")
|
171 |
|
172 |
-
#
|
173 |
-
|
|
|
174 |
self.max_length = 2048
|
175 |
|
176 |
# First load the tokenizer as it's lighter on memory
|
177 |
logger.info("Loading tokenizer...")
|
178 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
179 |
self.model_name,
|
|
|
180 |
trust_remote_code=True
|
181 |
)
|
182 |
|
@@ -189,22 +191,19 @@ class MedicalAssistant:
|
|
189 |
logger.info("Loading model - this may take a few minutes...")
|
190 |
self.model = AutoModelForCausalLM.from_pretrained(
|
191 |
self.model_name,
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
195 |
)
|
196 |
|
197 |
-
#
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
model=self.model,
|
202 |
-
tokenizer=self.tokenizer,
|
203 |
-
device=-1, # Force CPU usage
|
204 |
-
torch_dtype=torch.float32
|
205 |
-
)
|
206 |
|
207 |
-
logger.info("
|
208 |
|
209 |
except Exception as e:
|
210 |
logger.error(f"Initialization failed: {str(e)}")
|
@@ -213,8 +212,8 @@ class MedicalAssistant:
|
|
213 |
|
214 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
215 |
"""
|
216 |
-
Generate a response using the
|
217 |
-
|
218 |
"""
|
219 |
try:
|
220 |
logger.info("Preparing message for generation")
|
@@ -227,19 +226,30 @@ class MedicalAssistant:
|
|
227 |
# Format the conversation
|
228 |
prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
logger.info("Generating response")
|
231 |
# Generate with conservative settings for CPU
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
241 |
|
242 |
-
#
|
|
|
243 |
response = response.split("Assistant:")[-1].strip()
|
244 |
|
245 |
logger.info("Response generated successfully")
|
@@ -250,7 +260,7 @@ class MedicalAssistant:
|
|
250 |
logger.error(traceback.format_exc())
|
251 |
return f"I apologize, but I encountered an error: {str(e)}"
|
252 |
|
253 |
-
#
|
254 |
assistant = None
|
255 |
|
256 |
def initialize_assistant():
|
@@ -287,8 +297,8 @@ demo = gr.ChatInterface(
|
|
287 |
fn=chat_response,
|
288 |
title="Medical Assistant (CPU Version)",
|
289 |
description="""This medical assistant provides guidance and information
|
290 |
-
about health-related queries.
|
291 |
-
in CPU mode
|
292 |
examples=[
|
293 |
"What are the symptoms of malaria?",
|
294 |
"How can I prevent type 2 diabetes?",
|
|
|
164 |
def __init__(self):
|
165 |
"""
|
166 |
Initialize the medical assistant with CPU-friendly settings.
|
167 |
+
We use a base model instead of a quantized version to ensure CPU compatibility.
|
168 |
"""
|
169 |
try:
|
170 |
logger.info("Starting model initialization...")
|
171 |
|
172 |
+
# Using a standard model instead of a 4-bit quantized version
|
173 |
+
# This model is larger but more compatible with CPU-only environments
|
174 |
+
self.model_name = "meta-llama/Llama-2-7b-chat-hf"
|
175 |
self.max_length = 2048
|
176 |
|
177 |
# First load the tokenizer as it's lighter on memory
|
178 |
logger.info("Loading tokenizer...")
|
179 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
180 |
self.model_name,
|
181 |
+
token=os.getenv('HUGGING_FACE_TOKEN'), # Add your token in Space settings
|
182 |
trust_remote_code=True
|
183 |
)
|
184 |
|
|
|
191 |
logger.info("Loading model - this may take a few minutes...")
|
192 |
self.model = AutoModelForCausalLM.from_pretrained(
|
193 |
self.model_name,
|
194 |
+
token=os.getenv('HUGGING_FACE_TOKEN'),
|
195 |
+
device_map="auto", # This will default to CPU if no GPU is available
|
196 |
+
torch_dtype=torch.float32, # Standard precision for CPU
|
197 |
+
low_cpu_mem_usage=True, # Optimize memory usage
|
198 |
+
offload_folder="offload" # Enable disk offloading for memory management
|
199 |
)
|
200 |
|
201 |
+
# Move model explicitly to CPU and clear any GPU memory
|
202 |
+
self.model = self.model.to('cpu')
|
203 |
+
if torch.cuda.is_available():
|
204 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
logger.info("Model loaded successfully!")
|
207 |
|
208 |
except Exception as e:
|
209 |
logger.error(f"Initialization failed: {str(e)}")
|
|
|
212 |
|
213 |
def generate_response(self, message: str, chat_history: List[Dict] = None) -> str:
|
214 |
"""
|
215 |
+
Generate a response directly using the model instead of a pipeline.
|
216 |
+
This gives us more control over the generation process.
|
217 |
"""
|
218 |
try:
|
219 |
logger.info("Preparing message for generation")
|
|
|
226 |
# Format the conversation
|
227 |
prompt = f"{system_prompt}\n\nUser: {message}\nAssistant:"
|
228 |
|
229 |
+
# Tokenize the input
|
230 |
+
inputs = self.tokenizer(
|
231 |
+
prompt,
|
232 |
+
return_tensors="pt",
|
233 |
+
padding=True,
|
234 |
+
truncation=True,
|
235 |
+
max_length=self.max_length
|
236 |
+
).to('cpu') # Ensure inputs are on CPU
|
237 |
+
|
238 |
logger.info("Generating response")
|
239 |
# Generate with conservative settings for CPU
|
240 |
+
with torch.no_grad(): # Disable gradient computation to save memory
|
241 |
+
outputs = self.model.generate(
|
242 |
+
**inputs,
|
243 |
+
max_new_tokens=256, # Reduced for CPU efficiency
|
244 |
+
do_sample=True,
|
245 |
+
temperature=0.7,
|
246 |
+
top_p=0.95,
|
247 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
248 |
+
repetition_penalty=1.1
|
249 |
+
)
|
250 |
|
251 |
+
# Decode and clean up the response
|
252 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
253 |
response = response.split("Assistant:")[-1].strip()
|
254 |
|
255 |
logger.info("Response generated successfully")
|
|
|
260 |
logger.error(traceback.format_exc())
|
261 |
return f"I apologize, but I encountered an error: {str(e)}"
|
262 |
|
263 |
+
# The rest of your code remains the same
|
264 |
assistant = None
|
265 |
|
266 |
def initialize_assistant():
|
|
|
297 |
fn=chat_response,
|
298 |
title="Medical Assistant (CPU Version)",
|
299 |
description="""This medical assistant provides guidance and information
|
300 |
+
about health-related queries. Please note that response
|
301 |
+
generation may take longer as this is running in CPU mode.""",
|
302 |
examples=[
|
303 |
"What are the symptoms of malaria?",
|
304 |
"How can I prevent type 2 diabetes?",
|