Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from typing import List, Optional, Dict
|
4 |
import gradio as gr
|
@@ -7,9 +7,15 @@ from enum import Enum
|
|
7 |
import re
|
8 |
import os
|
9 |
import time
|
|
|
10 |
from huggingface_hub import hf_hub_download
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
from llama_cpp import Llama
|
15 |
LLAMA_IMPORT_ERROR = None
|
@@ -33,7 +39,7 @@ class ChatResponse(BaseModel):
|
|
33 |
response: str
|
34 |
finished: bool
|
35 |
|
36 |
-
# Standard health assessment questions
|
37 |
HEALTH_ASSESSMENT_QUESTIONS = [
|
38 |
"What are your current symptoms and how long have you been experiencing them?",
|
39 |
"Do you have any pre-existing medical conditions or chronic illnesses?",
|
@@ -42,6 +48,7 @@ HEALTH_ASSESSMENT_QUESTIONS = [
|
|
42 |
"Have you had any similar symptoms in the past? If yes, what treatments worked?"
|
43 |
]
|
44 |
|
|
|
45 |
NURSE_OGE_IDENTITY = """
|
46 |
You are Nurse Oge, a medical AI assistant focused on serving patients in Nigeria. Always be empathetic,
|
47 |
professional, and thorough in your assessments. When asked about your identity, explain that you are
|
@@ -54,19 +61,14 @@ class NurseOgeAssistant:
|
|
54 |
if LLAMA_IMPORT_ERROR:
|
55 |
raise ImportError(f"Cannot initialize NurseOgeAssistant due to llama_cpp import error: {LLAMA_IMPORT_ERROR}")
|
56 |
|
57 |
-
# Download the model file
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
self.llm = Llama(
|
67 |
-
model_path=model_path,
|
68 |
-
n_ctx=2048, # Context window
|
69 |
-
n_threads=4 # Number of CPU threads to use
|
70 |
)
|
71 |
|
72 |
except Exception as e:
|
@@ -75,8 +77,6 @@ class NurseOgeAssistant:
|
|
75 |
self.consultation_states = {}
|
76 |
self.gathered_info = {}
|
77 |
|
78 |
-
# ... (rest of the NurseOgeAssistant class methods remain the same)
|
79 |
-
|
80 |
def _is_identity_question(self, message: str) -> bool:
|
81 |
identity_patterns = [
|
82 |
r"who are you",
|
@@ -107,72 +107,94 @@ class NurseOgeAssistant:
|
|
107 |
return None
|
108 |
|
109 |
async def process_message(self, conversation_id: str, message: str, history: List[Dict]) -> ChatResponse:
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
# Handle identity questions
|
115 |
-
if self._is_identity_question(message):
|
116 |
-
return ChatResponse(
|
117 |
-
response="I am Nurse Oge, a medical AI assistant dedicated to helping patients in Nigeria. "
|
118 |
-
"I'm here to provide medical guidance while ensuring I gather all necessary health information "
|
119 |
-
"for accurate assessments.",
|
120 |
-
finished=True
|
121 |
-
)
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
finished=False
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
if next_question:
|
147 |
return ChatResponse(
|
148 |
-
response=f"
|
|
|
149 |
finished=False
|
150 |
)
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
])
|
157 |
-
|
158 |
-
messages = [
|
159 |
-
{"role": "system", "content": NURSE_OGE_IDENTITY},
|
160 |
-
{"role": "user", "content": f"Based on the following patient information, provide a thorough assessment and recommendations:\n\n{context}\n\nOriginal query: {message}"}
|
161 |
-
]
|
162 |
-
|
163 |
-
response = self.llm.create_chat_completion(
|
164 |
-
messages=messages,
|
165 |
-
max_tokens=1024,
|
166 |
-
temperature=0.7
|
167 |
-
)
|
168 |
-
|
169 |
-
self.consultation_states[conversation_id] = ConsultationState.INITIAL
|
170 |
-
self.gathered_info[conversation_id] = []
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
# Initialize FastAPI
|
178 |
app = FastAPI()
|
@@ -180,6 +202,14 @@ app = FastAPI()
|
|
180 |
# Create a global variable for our assistant
|
181 |
nurse_oge = None
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
@app.on_event("startup")
|
184 |
async def startup_event():
|
185 |
global nurse_oge
|
@@ -187,7 +217,10 @@ async def startup_event():
|
|
187 |
nurse_oge = NurseOgeAssistant()
|
188 |
except Exception as e:
|
189 |
print(f"Failed to initialize NurseOgeAssistant: {e}")
|
190 |
-
|
|
|
|
|
|
|
191 |
|
192 |
@app.post("/chat")
|
193 |
async def chat_endpoint(request: ChatRequest):
|
@@ -197,15 +230,13 @@ async def chat_endpoint(request: ChatRequest):
|
|
197 |
detail="The medical assistant is not available at the moment. Please try again later."
|
198 |
)
|
199 |
|
200 |
-
conversation_id = "default"
|
201 |
-
|
202 |
if not request.messages:
|
203 |
raise HTTPException(status_code=400, detail="No messages provided")
|
204 |
|
205 |
latest_message = request.messages[-1].content
|
206 |
|
207 |
response = await nurse_oge.process_message(
|
208 |
-
conversation_id=
|
209 |
message=latest_message,
|
210 |
history=request.messages[:-1]
|
211 |
)
|
@@ -220,6 +251,7 @@ def gradio_chat(message, history):
|
|
220 |
response = nurse_oge.process_message("gradio_user", message, history)
|
221 |
return response.response
|
222 |
|
|
|
223 |
demo = gr.ChatInterface(
|
224 |
fn=gradio_chat,
|
225 |
title="Nurse Oge",
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request
|
2 |
from pydantic import BaseModel
|
3 |
from typing import List, Optional, Dict
|
4 |
import gradio as gr
|
|
|
7 |
import re
|
8 |
import os
|
9 |
import time
|
10 |
+
import gc
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
+
# Environment variables for configuration
|
14 |
+
MODEL_REPO_ID = os.getenv("MODEL_REPO_ID", "mradermacher/Llama3-Med42-8B-GGUF")
|
15 |
+
MODEL_FILENAME = os.getenv("MODEL_FILENAME", "Llama3-Med42-8B.Q4_K_M.gguf")
|
16 |
+
N_THREADS = int(os.getenv("N_THREADS", "4"))
|
17 |
+
|
18 |
+
# Import llama_cpp with error handling for better debugging
|
19 |
try:
|
20 |
from llama_cpp import Llama
|
21 |
LLAMA_IMPORT_ERROR = None
|
|
|
39 |
response: str
|
40 |
finished: bool
|
41 |
|
42 |
+
# Standard health assessment questions for thorough patient evaluation
|
43 |
HEALTH_ASSESSMENT_QUESTIONS = [
|
44 |
"What are your current symptoms and how long have you been experiencing them?",
|
45 |
"Do you have any pre-existing medical conditions or chronic illnesses?",
|
|
|
48 |
"Have you had any similar symptoms in the past? If yes, what treatments worked?"
|
49 |
]
|
50 |
|
51 |
+
# Define the AI assistant's identity and role
|
52 |
NURSE_OGE_IDENTITY = """
|
53 |
You are Nurse Oge, a medical AI assistant focused on serving patients in Nigeria. Always be empathetic,
|
54 |
professional, and thorough in your assessments. When asked about your identity, explain that you are
|
|
|
61 |
if LLAMA_IMPORT_ERROR:
|
62 |
raise ImportError(f"Cannot initialize NurseOgeAssistant due to llama_cpp import error: {LLAMA_IMPORT_ERROR}")
|
63 |
|
|
|
64 |
try:
|
65 |
+
# Initialize the model using from_pretrained for better compatibility with free tier
|
66 |
+
self.llm = Llama.from_pretrained(
|
67 |
+
repo_id=MODEL_REPO_ID,
|
68 |
+
filename=MODEL_FILENAME,
|
69 |
+
n_ctx=2048, # Context window size
|
70 |
+
n_threads=N_THREADS, # Adjust based on available CPU resources
|
71 |
+
n_gpu_layers=0 # CPU-only inference for free tier
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
except Exception as e:
|
|
|
77 |
self.consultation_states = {}
|
78 |
self.gathered_info = {}
|
79 |
|
|
|
|
|
80 |
def _is_identity_question(self, message: str) -> bool:
|
81 |
identity_patterns = [
|
82 |
r"who are you",
|
|
|
107 |
return None
|
108 |
|
109 |
async def process_message(self, conversation_id: str, message: str, history: List[Dict]) -> ChatResponse:
|
110 |
+
try:
|
111 |
+
# Initialize state for new conversations
|
112 |
+
if conversation_id not in self.consultation_states:
|
113 |
+
self.consultation_states[conversation_id] = ConsultationState.INITIAL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Handle identity questions
|
116 |
+
if self._is_identity_question(message):
|
117 |
+
return ChatResponse(
|
118 |
+
response="I am Nurse Oge, a medical AI assistant dedicated to helping patients in Nigeria. "
|
119 |
+
"I'm here to provide medical guidance while ensuring I gather all necessary health information "
|
120 |
+
"for accurate assessments.",
|
121 |
+
finished=True
|
122 |
+
)
|
123 |
|
124 |
+
# Handle location questions
|
125 |
+
if self._is_location_question(message):
|
126 |
+
return ChatResponse(
|
127 |
+
response="I am based in Nigeria and specifically trained to serve Nigerian communities, "
|
128 |
+
"taking into account local healthcare contexts and needs.",
|
129 |
+
finished=True
|
130 |
+
)
|
|
|
|
|
131 |
|
132 |
+
# Start health assessment for medical queries
|
133 |
+
if self.consultation_states[conversation_id] == ConsultationState.INITIAL:
|
134 |
+
self.consultation_states[conversation_id] = ConsultationState.GATHERING_INFO
|
135 |
+
next_question = self._get_next_assessment_question(conversation_id)
|
|
|
|
|
136 |
return ChatResponse(
|
137 |
+
response=f"Before I can provide any medical advice, I need to gather some important health information. "
|
138 |
+
f"{next_question}",
|
139 |
finished=False
|
140 |
)
|
141 |
+
|
142 |
+
# Continue gathering information
|
143 |
+
if self.consultation_states[conversation_id] == ConsultationState.GATHERING_INFO:
|
144 |
+
self.gathered_info[conversation_id].append(message)
|
145 |
+
next_question = self._get_next_assessment_question(conversation_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
if next_question:
|
148 |
+
return ChatResponse(
|
149 |
+
response=f"Thank you for that information. {next_question}",
|
150 |
+
finished=False
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
self.consultation_states[conversation_id] = ConsultationState.DIAGNOSIS
|
154 |
+
context = "\n".join([
|
155 |
+
f"Q: {q}\nA: {a}" for q, a in
|
156 |
+
zip(HEALTH_ASSESSMENT_QUESTIONS, self.gathered_info[conversation_id])
|
157 |
+
])
|
158 |
+
|
159 |
+
messages = [
|
160 |
+
{"role": "system", "content": NURSE_OGE_IDENTITY},
|
161 |
+
{"role": "user", "content": f"Based on the following patient information, provide a thorough assessment and recommendations:\n\n{context}\n\nOriginal query: {message}"}
|
162 |
+
]
|
163 |
+
|
164 |
+
# Implement retry logic for API calls
|
165 |
+
max_retries = 3
|
166 |
+
retry_delay = 2
|
167 |
+
|
168 |
+
for attempt in range(max_retries):
|
169 |
+
try:
|
170 |
+
response = self.llm.create_chat_completion(
|
171 |
+
messages=messages,
|
172 |
+
max_tokens=512, # Reduced for free tier
|
173 |
+
temperature=0.7
|
174 |
+
)
|
175 |
+
break
|
176 |
+
except Exception as e:
|
177 |
+
if attempt < max_retries - 1:
|
178 |
+
time.sleep(retry_delay)
|
179 |
+
continue
|
180 |
+
return ChatResponse(
|
181 |
+
response="I'm sorry, I'm experiencing some technical difficulties. Please try again in a moment.",
|
182 |
+
finished=True
|
183 |
+
)
|
184 |
+
|
185 |
+
self.consultation_states[conversation_id] = ConsultationState.INITIAL
|
186 |
+
self.gathered_info[conversation_id] = []
|
187 |
+
|
188 |
+
return ChatResponse(
|
189 |
+
response=response['choices'][0]['message']['content'],
|
190 |
+
finished=True
|
191 |
+
)
|
192 |
+
|
193 |
+
except Exception as e:
|
194 |
+
return ChatResponse(
|
195 |
+
response=f"An error occurred while processing your request. Please try again.",
|
196 |
+
finished=True
|
197 |
+
)
|
198 |
|
199 |
# Initialize FastAPI
|
200 |
app = FastAPI()
|
|
|
202 |
# Create a global variable for our assistant
|
203 |
nurse_oge = None
|
204 |
|
205 |
+
# Add memory management middleware
|
206 |
+
@app.middleware("http")
|
207 |
+
async def add_memory_management(request: Request, call_next):
|
208 |
+
gc.collect() # Force garbage collection before processing request
|
209 |
+
response = await call_next(request)
|
210 |
+
gc.collect() # Clean up after request
|
211 |
+
return response
|
212 |
+
|
213 |
@app.on_event("startup")
|
214 |
async def startup_event():
|
215 |
global nurse_oge
|
|
|
217 |
nurse_oge = NurseOgeAssistant()
|
218 |
except Exception as e:
|
219 |
print(f"Failed to initialize NurseOgeAssistant: {e}")
|
220 |
+
|
221 |
+
@app.get("/health")
|
222 |
+
async def health_check():
|
223 |
+
return {"status": "healthy", "model_loaded": nurse_oge is not None}
|
224 |
|
225 |
@app.post("/chat")
|
226 |
async def chat_endpoint(request: ChatRequest):
|
|
|
230 |
detail="The medical assistant is not available at the moment. Please try again later."
|
231 |
)
|
232 |
|
|
|
|
|
233 |
if not request.messages:
|
234 |
raise HTTPException(status_code=400, detail="No messages provided")
|
235 |
|
236 |
latest_message = request.messages[-1].content
|
237 |
|
238 |
response = await nurse_oge.process_message(
|
239 |
+
conversation_id="default",
|
240 |
message=latest_message,
|
241 |
history=request.messages[:-1]
|
242 |
)
|
|
|
251 |
response = nurse_oge.process_message("gradio_user", message, history)
|
252 |
return response.response
|
253 |
|
254 |
+
# Create and configure Gradio interface
|
255 |
demo = gr.ChatInterface(
|
256 |
fn=gradio_chat,
|
257 |
title="Nurse Oge",
|