Spaces:
Paused
Paused
File size: 6,219 Bytes
eb0678a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import torch
from ..constants import *
from ..conversation import conv_templates, SeparatorStyle
from ..model.builder import load_pretrained_model
from ..utils import disable_torch_init
from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria
from PIL import Image
import os
from decord import VideoReader, cpu
import numpy as np
class Chat:
def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False):
disable_torch_init()
self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name="ChatUniVi", load_8bit=load_8bit, load_4bit=load_4bit)
mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.model.resize_token_embeddings(len(self.tokenizer))
vision_tower = self.model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
self.image_processor = vision_tower.image_processor
self.conv_mode = conv_mode
print(self.model)
def get_prompt(self, qs, state):
state.append_message(state.roles[0], qs)
state.append_message(state.roles[1], None)
return state
def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224,
video_framerate=1, s=None, e=None):
if s is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = start_time if start_time >= 0. else 0.
end_time = end_time if end_time >= 0. else 0.
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
print(video_path)
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
return patch_images
@torch.inference_mode()
def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
state = self.get_prompt(prompt, state)
prompt = state.get_prompt()
print(prompt)
images_tensor = torch.stack(images_tensor, dim=0)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
temperature = 0.2
max_new_tokens = 1024
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
conv_templates[self.conv_mode].copy().sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images_tensor,
do_sample=True,
temperature=temperature,
num_beams=1,
max_new_tokens=max_new_tokens,
use_cache=True,
stopping_criteria=[stopping_criteria])
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
print('response', outputs)
return outputs, state
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/PKU-YuanGroup/Chat-UniVi" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://z1.ax1x.com/2023/11/22/pidlXh4.jpg" alt="Chat-UniVi🚀" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/PKU-YuanGroup/Chat-UniVi'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/pdf/2311.08046.pdf"><img src="https://img.shields.io/badge/Arxiv-2311.08046-red"></a>
<a href='https://github.com/PKU-YuanGroup/Chat-UniVi/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/Chat-UniVi.svg?style=social'></a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
|