Spaces:
Paused
Paused
File size: 41,564 Bytes
eb0678a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
# This file may have been modified by Flash-VStream Authors (Flash-VStream Modifications”). All Flash-VStream Modifications are Copyright 2024 Flash-VStream Authors.
# ------------------------------------------------------------------------
# Based on https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import math
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.multiprocessing import Lock, Manager
from abc import ABC, abstractmethod
from flash_vstream.model.multimodal_encoder.builder import build_vision_tower
from flash_vstream.model.multimodal_projector.builder import build_vision_projector
from flash_vstream.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from flash_vstream.model.compress_functions import drop_feature, merge_feature, kmeans_feature, weighted_kmeans_feature, k_drop_feature, k_merge_feature, attention_feature
class NeuralTuringMachine(nn.Module):
def __init__(self, input_dim=1024, output_dim=1024, attention_dropout=0.1):
super(NeuralTuringMachine, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.q_proj = nn.Linear(input_dim, output_dim)
self.k_proj = nn.Linear(input_dim, output_dim)
self.v_proj = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(attention_dropout)
self.out_proj = nn.Linear(output_dim, input_dim)
self.out_dropout = nn.Dropout(attention_dropout)
self.out_ln = nn.LayerNorm(input_dim, eps=1e-12)
def get_weight(self, x, y):
query = self.q_proj(x)
key = self.k_proj(y)
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim)
weight = F.softmax(scores, dim=-1)
return weight
def forward(self, x, y):
query = self.q_proj(x)
key = self.k_proj(y)
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim)
weight = F.softmax(scores, dim=-1)
attn = self.dropout(weight)
value = self.v_proj(y)
output = torch.matmul(attn, value)
output = self.out_proj(output)
output = self.out_dropout(output)
output = self.out_ln(output.unsqueeze(0)).squeeze(0)
return output
class VStreamMetaModel:
def __init__(self, config):
super(VStreamMetaModel, self).__init__(config)
self.mm_input_dim = config.mm_hidden_size
if getattr(config, 'mm_use_4_vision_tokens', False):
self.mm_input_dim = self.mm_input_dim * 4
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config, self.mm_input_dim)
compress_Turing_hidden_dim = getattr(self.config, "compress_Turing_hidden_dim", 32)
self.attention_model = NeuralTuringMachine(self.mm_input_dim, compress_Turing_hidden_dim)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.compress_type = getattr(model_args, "compress_type", None)
self.config.compress_size = getattr(model_args, "compress_size", 1)
self.config.compress_long_memory_size = getattr(model_args, "compress_long_memory_size", 1)
self.config.compress_Turing_memory_size = getattr(model_args, "compress_Turing_memory_size", 1)
self.config.compress_Turing_update_ratio = getattr(model_args, "compress_Turing_update_ratio", 0.2)
self.config.video_max_frames = getattr(model_args, "video_max_frames", 50)
self.config.video_long_memory_length = getattr(model_args, "video_long_memory_length", 10)
self.config.video_Turing_memory_length = getattr(model_args, "video_Turing_memory_length", 10)
self.config.video_short_memory_length = getattr(model_args, "video_short_memory_length", 10)
self.config.video_current_memory_length = getattr(model_args, "video_current_memory_length", 1)
self.config.video_sample_type = getattr(model_args, "video_sample_type", "center")
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
class VStreamMetaForCausalLM(ABC):
def __init__(self, config):
super(VStreamMetaForCausalLM, self).__init__(config)
# support video streaming mode
self.use_video_streaming_mode = False
self.video_embedding_memory = None # set to torch.multiprocessing.Manager.list() when launching
self.video_embedding_mem_lock = Lock()
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
return image_features
def reshape_2x2_image_features(self, image_features):
B, P, D = image_features.shape
patch_size = round(math.sqrt(P))
assert patch_size % 2 == 0, "Patch size must be divisible by 2."
image_features = image_features.reshape(B, patch_size, patch_size, D)
image_features_2x2 = image_features.reshape(B, patch_size // 2, 2, patch_size // 2, 2, D)
image_features_2x2 = image_features_2x2.permute(0, 1, 3, 2, 4, 5)
image_features_2x2 = image_features_2x2.reshape(B, patch_size // 2, patch_size // 2, 4 * D) # concat 2x2 neighbor patches
image_features = image_features_2x2.reshape(B, (patch_size // 2) ** 2, 4 * D)
return image_features
def attention(self, turing_memory, new_feature, update_ratio=0.2):
T1, D1 = turing_memory.shape
T2, D2 = new_feature.shape
assert D1 == D2, f"dimmension not match, {D1} != {D2}"
model = self.get_model().attention_model
weight = model.get_weight(turing_memory, new_feature)
weight = weight * update_ratio # [T1, T2]
decay = weight.sum(dim=1, keepdim=True) # [T0*P, 1], 表示当前NTM memory和新来的feat的相似度
turing_memory = turing_memory * (1 - decay) + torch.mm(weight, new_feature)
return turing_memory
def attention2(self, turing_memory, new_feature, update_ratio=0.2): # deprecated
T1, D1 = turing_memory.shape
T2, D2 = new_feature.shape
assert D1 == D2, f"dimmension not match, {D1} != {D2}"
model = self.get_model().attention_model
turing_memory = model.forward(turing_memory, new_feature)
return turing_memory
def compress_spatial_features(self, image_features, compress_size=1):
compress_type = getattr(self.config, "compress_type", None)
patch_size = round(math.sqrt(image_features.shape[1]))
assert patch_size * patch_size == image_features.shape[1], f"For ViT feature map, {patch_size}*{patch_size}={patch_size**2} != {image_features.shape[1]}"
if patch_size == compress_size:
return image_features
elif compress_type is not None:
if 'mean' in self.config.compress_type:
# TODO: currently use 1 token per frame (or image), direct poolt
if compress_size == 1:
image_features = image_features.mean(dim=1, keepdim=True)
else:
image_features = image_features.view(-1, patch_size, patch_size, image_features.shape[-1])
image_features = image_features.permute(0, 3, 1, 2) # [B*T, D, P, P]
pooled_features = F.avg_pool2d(image_features, (patch_size // compress_size, patch_size // compress_size))
pooled_features = pooled_features.permute(0, 2, 3, 1) # [B*T, P, P, D]
image_features = pooled_features.view(-1, compress_size * compress_size, pooled_features.shape[-1])
else:
raise NotImplementedError(f"`compress_type` {self.config.compress_type} is not supported yet.")
return image_features
def compress_temporal_features(self, image_features):
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10)
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10)
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1)
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1)
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1)
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2)
compress_fn_dic = {
'drop': drop_feature,
'merge': merge_feature,
'kmeans': kmeans_feature,
'weighted_kmeans': weighted_kmeans_feature,
'kdrop': k_drop_feature,
'kmerge': k_merge_feature,
'attention': attention_feature,
}
compress_type = self.config.video_sample_type
if compress_type in compress_fn_dic:
compress_fn = compress_fn_dic[compress_type]
else:
raise NotImplementedError(f'max_length = {self.config.video_max_frames},'
f'while video_sample_type = {compress_type} is not supported yet.')
new_image_features = []
step_indices = []
step_features = []
for img_feature in image_features: # [T, P*P, D]
cur_start = min(video_current_memory_length, img_feature.shape[0])
### Calc Spatial Memory
if cur_start == 0:
cur_memory = img_feature[:0]
long_memory = img_feature
Turing_memory = img_feature
else:
cur_memory = img_feature[-cur_start:] # [C, P*P, D]
long_memory = img_feature[:-cur_start] # [L, P*P, D]
Turing_memory = img_feature[:-cur_start] # [L, P*P, D]
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]:
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L, P'*P', D]
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]:
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L, P'*P', D]
### Calc Temporal Memory
if video_long_memory_length == 0 or long_memory.shape[0] == 0:
long_memory_compreesed = long_memory[:0]
else:
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) # [L_long, P'*P', D], [L_long]
### Calc Retrieved Memory
sorted_indices = torch.argsort(weight, descending=True) # [L_long]
key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D]
key_length = 3
if key_centroids.shape[0] > key_length:
key_centroids = key_centroids[:key_length]
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L]
min_indices = torch.argmin(dists, dim=0) # [k_L]
key_memory = img_feature[min_indices]
cur_memory = torch.cat([key_memory, cur_memory], dim=0)
### Calc Abstract Memory
if video_Turing_memory_length == 0 or Turing_memory.shape[0] == 0:
Turing_memory_compreesed = Turing_memory[:0]
else:
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio)
memory_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0)
new_image_features.append(memory_feature)
return new_image_features
def cat_proj(self, all_features): # concatenate features and project them together
feature_split_size = [x.shape[0] for x in all_features]
feature_embed = torch.cat(all_features, dim=0)
feature_proj = self.get_model().mm_projector(feature_embed)
feature_proj = torch.split(feature_proj, feature_split_size, dim=0)
return feature_proj
def prepare_inputs_labels_for_multimodal(
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
features
):
vision_tower = self.get_vision_tower()
if vision_tower is None or (images is None and features is None) or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and ((images is not None) or (features is not None)) and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
if target_shape - attention_mask.shape[1] >= 0:
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
elif target_shape - attention_mask.shape[1] < 0:
attention_mask = attention_mask[:, :target_shape]
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if (features is not None) or (type(images) is list) or (images.ndim == 5):
compress_size = getattr(self.config, "compress_size", 1)
if images is not None:
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W]
concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W]
image_features = self.encode_images(concat_images) # [B*T, P, D]
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D]
image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D]
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D]
else:
image_features = [feat if len(feat.shape) == 3 else feat.unsqueeze(0) for feat in features]
origin_img_features = image_features
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = [self.reshape_2x2_image_features(img_feature) for img_feature in image_features] # [B*T, P/4, 4*D]
image_features = [self.compress_spatial_features(image_feature, compress_size) for image_feature in image_features] # [B*T, P', D]
# perform memory consolidation
image_features = self.compress_temporal_features(image_features) # [B, TP, D]
image_features = [x.to(self.device) for x in image_features] # [B, TP, D]
image_features = self.cat_proj(image_features)
else:
image_features = self.encode_images(images).to(self.device) # [B, 576, 2048]
if getattr(self.config, 'mm_use_4_vision_tokens', False):
image_features = self.reshape_2x2_image_features(image_features) # [B*T, P/4, 4*D]
image_features = self.get_model().mm_projector(image_features)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
assert cur_image_idx == batch_idx + 1
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def prepare_inputs_labels_for_multimodal_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1
self,
input_ids,
position_ids,
attention_mask,
past_key_values,
labels
):
assert self.use_video_streaming_mode
logger = logging.getLogger(__name__)
vision_tower = self.get_vision_tower()
if vision_tower is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
if target_shape - attention_mask.shape[1] >= 0:
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
elif target_shape - attention_mask.shape[1] < 0:
attention_mask = attention_mask[:, :target_shape]
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
# Have some tries to avoid deadlock
attempt_times = 0
while attempt_times < 300:
try:
with self.video_embedding_mem_lock:
cur_memory, long_memory_compreesed, Turing_memory_compreesed, _ = self.video_embedding_memory
logger.info(f'Read cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}')
image_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0)
image_features = [image_feature.to(self.device)]
break
except Exception as e:
logger.error(f'Attempt:{attempt_times} Failed to get video features, Error: {e}')
image_features = []
time.sleep(0.1)
attempt_times += 1
image_features = [x.to(self.device) for x in image_features] # [B, TP, D]
image_features = self.cat_proj(image_features)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] # only input first image_token
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
assert cur_image_idx == batch_idx + 1
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def embed_video_streaming( # Asynchronous encoding with a SemLock, only for videos, batch_size=1
self,
images
):
assert self.use_video_streaming_mode
logger = logging.getLogger(__name__)
compress_size = getattr(self.config, "compress_size", 1)
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10)
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10)
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) # not used
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1)
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1)
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1)
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2)
compress_fn_dic = {
'drop': drop_feature,
'merge': merge_feature,
'kmeans': kmeans_feature,
'weighted_kmeans': weighted_kmeans_feature,
'kdrop': k_drop_feature,
'kmerge': k_merge_feature,
'uni_kmerge': k_merge_feature,
'both_kmerge': k_merge_feature,
'split_kmerge': k_merge_feature,
'attention': attention_feature,
}
if type(images) is list or images.ndim == 5:
assert len(images) == 1
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] # [B, T, C, H, W]
concat_images = torch.cat([image for image in images], dim=0) # [B*T, C, H, W]
image_features = self.encode_images(concat_images) # [B*T, P, D]
image_features = self.compress_spatial_features(image_features, compress_size) # [B*T, P', D]
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0) # [B, T, P, D]
else:
raise NotImplementedError('Should input video frames, not a single image')
image_feature = image_features[0].detach().to(torch.float16).to(self.device) # [T, P, D]
img_feature_buffer = image_feature.cpu()
cur_start = min(video_current_memory_length, image_feature.shape[0])
if cur_start == 0:
cur_memory = image_feature[:0]
else:
cur_memory = image_feature[-cur_start:] # [L_c, P*P, D]
long_memory = image_feature
Turing_memory = image_feature
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]:
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) # [L_l, P'*P', D]
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]:
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) # [L_t, P'*P', D]
compress_type = self.config.video_sample_type
if compress_type in compress_fn_dic:
compress_fn = compress_fn_dic[compress_type]
else:
raise NotImplementedError(f'max_length = {self.config.video_max_frames},'
f'while video_sample_type = {compress_type} is not supported yet.')
long_memory_compreesed = long_memory
Turing_memory_compreesed = Turing_memory
# Read old memory from shared memory, do not need an I/O lock
if self.video_embedding_memory is not None and len(self.video_embedding_memory) > 0:
old_cur_memory, old_long_memory_compreesed, old_Turing_memory_compreesed, old_img_feature_buffer = self.video_embedding_memory
old_long_memory_compreesed = old_long_memory_compreesed.to(self.device)
old_Turing_memory_compreesed = old_Turing_memory_compreesed.to(self.device)
img_feature_buffer = torch.cat([old_img_feature_buffer, image_feature.cpu()], dim=0)
assert isinstance(old_long_memory_compreesed, torch.Tensor) and old_long_memory_compreesed.shape[1:] == long_memory_compreesed.shape[1:]
long_memory = torch.cat((old_long_memory_compreesed, long_memory_compreesed), dim=0)
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length)
# Retrive key frames
sorted_indices = torch.argsort(weight, descending=True) # [L_long]
key_centroids = long_memory[sorted_indices] # [L_long, P'*P', D]
key_length = 3
if key_centroids.shape[0] > key_length:
key_centroids = key_centroids[:key_length]
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() # [L_long, k_L]
min_indices = torch.argmin(dists, dim=0) # [k_L]
key_memory = img_feature_buffer[min_indices.cpu()].to(self.device)
cur_memory = torch.cat([key_memory, cur_memory], dim=0)
Turing_memory = torch.cat((old_Turing_memory_compreesed, Turing_memory_compreesed), dim=0)
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio)
# Write to shared memory, need an I/O lock
with self.video_embedding_mem_lock:
self.video_embedding_memory[:] = [cur_memory.cpu(), long_memory_compreesed.cpu(), Turing_memory_compreesed.cpu(), img_feature_buffer] # Only change content
logger.info(f'Write cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}')
return []
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
|