File size: 5,810 Bytes
eb0678a
 
 
 
 
595db44
eb0678a
 
 
 
 
 
 
 
 
595db44
 
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0471713
e6edca8
 
eb0678a
 
cc32390
eb0678a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595db44
eb0678a
 
57befad
eb0678a
595db44
 
 
eb0678a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from ..constants import *
from ..conversation import conv_templates, SeparatorStyle
from ..model.builder import load_pretrained_model
from ..utils import disable_torch_init
from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_model_name_from_path
from PIL import Image
import os
from decord import VideoReader, cpu
import numpy as np


class Chat:
    def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False):
        disable_torch_init()
        model_name = get_model_name_from_path(model_path)
        self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit=load_8bit, load_4bit=load_4bit)

        mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        self.model.resize_token_embeddings(len(self.tokenizer))

        vision_tower = self.model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()

        self.image_processor = vision_tower.image_processor
        self.conv_mode = conv_mode
        print(self.model)

    def get_prompt(self, qs, state):
        state.append_message(state.roles[0], qs)
        state.append_message(state.roles[1], None)
        return state

    def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224,
                          video_framerate=1, s=None, e=None):
        if s is None:
            start_time, end_time = None, None
        else:
            start_time = int(s)
            end_time = int(e)
            start_time = start_time if start_time >= 0. else 0.
            end_time = end_time if end_time >= 0. else 0.
            if start_time > end_time:
                start_time, end_time = end_time, start_time
            elif start_time == end_time:
                end_time = start_time + 1

        if os.path.exists(video_path):
            vreader = VideoReader(video_path, ctx=cpu(0))
        else:
            print(video_path)
            raise FileNotFoundError

        fps = vreader.get_avg_fps()
        f_start = 0 if start_time is None else int(start_time * fps)
        f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
        num_frames = f_end - f_start + 1
        if num_frames > 0:
            sample_fps = int(video_framerate)
            t_stride = int(round(float(fps) / sample_fps))

            all_pos = list(range(f_start, f_end + 1, t_stride))
            if len(all_pos) > max_frames:
                sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
            else:
                sample_pos = all_pos

            patch_numpy = vreader.get_batch(sample_pos).asnumpy()
            print("patch_numpy", patch_numpy.shape)
            return patch_numpy

    @torch.inference_mode()
    def generate(self, images_tensor, prompt, first_run, state):
        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor

        state = self.get_prompt(prompt, state)
        prompt = state.get_prompt()
        print(prompt)

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        temperature = 0.2
        max_new_tokens = 1024

        stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
        conv_templates[self.conv_mode].copy().sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=images_tensor,
                do_sample=True,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        print('response', outputs)
        return outputs, state



title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <div>
    <h1 >Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams</h1>
  </div>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href="https://invinciblewyq.github.io/vstream-page/"><img src='https://img.shields.io/badge/Project-Page-Green'></a>
        <a href="https://arxiv.org/abs/2406.08085v1"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
        <a href='https://github.com/IVGSZ/Flash-VStream'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
    </div>
</div>
""")

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""