Spaces:
Paused
Paused
Upload 2 files
Browse files
app.py
CHANGED
@@ -93,7 +93,7 @@ def clear_history(state, state_):
|
|
93 |
True, state, state_, state.to_gradio_chatbot(), [])
|
94 |
|
95 |
|
96 |
-
conv_mode = "
|
97 |
handler = Chat(model_path, conv_mode=conv_mode, load_4bit=load_4bit, load_8bit=load_8bit)
|
98 |
if not os.path.exists("temp"):
|
99 |
os.makedirs("temp")
|
|
|
93 |
True, state, state_, state.to_gradio_chatbot(), [])
|
94 |
|
95 |
|
96 |
+
conv_mode = "vicuna_v1"
|
97 |
handler = Chat(model_path, conv_mode=conv_mode, load_4bit=load_4bit, load_8bit=load_8bit)
|
98 |
if not os.path.exists("temp"):
|
99 |
os.makedirs("temp")
|
demo.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ..constants import *
|
3 |
+
from ..conversation import conv_templates, SeparatorStyle
|
4 |
+
from ..model.builder import load_pretrained_model
|
5 |
+
from ..utils import disable_torch_init
|
6 |
+
from ..mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_model_name_from_path
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
+
from decord import VideoReader, cpu
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
|
13 |
+
class Chat:
|
14 |
+
def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False):
|
15 |
+
disable_torch_init()
|
16 |
+
model_name = get_model_name_from_path(model_path)
|
17 |
+
self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name, load_8bit=load_8bit, load_4bit=load_4bit)
|
18 |
+
|
19 |
+
mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
|
20 |
+
mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True)
|
21 |
+
if mm_use_im_patch_token:
|
22 |
+
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
23 |
+
if mm_use_im_start_end:
|
24 |
+
self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
25 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
26 |
+
|
27 |
+
vision_tower = self.model.get_vision_tower()
|
28 |
+
if not vision_tower.is_loaded:
|
29 |
+
vision_tower.load_model()
|
30 |
+
|
31 |
+
self.image_processor = vision_tower.image_processor
|
32 |
+
self.conv_mode = conv_mode
|
33 |
+
print(self.model)
|
34 |
+
|
35 |
+
def get_prompt(self, qs, state):
|
36 |
+
state.append_message(state.roles[0], qs)
|
37 |
+
state.append_message(state.roles[1], None)
|
38 |
+
return state
|
39 |
+
|
40 |
+
def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224,
|
41 |
+
video_framerate=1, s=None, e=None):
|
42 |
+
if s is None:
|
43 |
+
start_time, end_time = None, None
|
44 |
+
else:
|
45 |
+
start_time = int(s)
|
46 |
+
end_time = int(e)
|
47 |
+
start_time = start_time if start_time >= 0. else 0.
|
48 |
+
end_time = end_time if end_time >= 0. else 0.
|
49 |
+
if start_time > end_time:
|
50 |
+
start_time, end_time = end_time, start_time
|
51 |
+
elif start_time == end_time:
|
52 |
+
end_time = start_time + 1
|
53 |
+
|
54 |
+
if os.path.exists(video_path):
|
55 |
+
vreader = VideoReader(video_path, ctx=cpu(0))
|
56 |
+
else:
|
57 |
+
print(video_path)
|
58 |
+
raise FileNotFoundError
|
59 |
+
|
60 |
+
fps = vreader.get_avg_fps()
|
61 |
+
f_start = 0 if start_time is None else int(start_time * fps)
|
62 |
+
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
|
63 |
+
num_frames = f_end - f_start + 1
|
64 |
+
if num_frames > 0:
|
65 |
+
sample_fps = int(video_framerate)
|
66 |
+
t_stride = int(round(float(fps) / sample_fps))
|
67 |
+
|
68 |
+
all_pos = list(range(f_start, f_end + 1, t_stride))
|
69 |
+
if len(all_pos) > max_frames:
|
70 |
+
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
|
71 |
+
else:
|
72 |
+
sample_pos = all_pos
|
73 |
+
|
74 |
+
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
|
75 |
+
return patch_images
|
76 |
+
|
77 |
+
@torch.inference_mode()
|
78 |
+
def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
|
79 |
+
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
|
80 |
+
|
81 |
+
state = self.get_prompt(prompt, state)
|
82 |
+
prompt = state.get_prompt()
|
83 |
+
print(prompt)
|
84 |
+
|
85 |
+
images_tensor = torch.stack(images_tensor, dim=0)
|
86 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
87 |
+
|
88 |
+
temperature = 0.2
|
89 |
+
max_new_tokens = 1024
|
90 |
+
|
91 |
+
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
|
92 |
+
conv_templates[self.conv_mode].copy().sep2
|
93 |
+
keywords = [stop_str]
|
94 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
95 |
+
|
96 |
+
with torch.inference_mode():
|
97 |
+
output_ids = model.generate(
|
98 |
+
input_ids,
|
99 |
+
images=images_tensor,
|
100 |
+
do_sample=True,
|
101 |
+
temperature=temperature,
|
102 |
+
num_beams=1,
|
103 |
+
max_new_tokens=max_new_tokens,
|
104 |
+
use_cache=True,
|
105 |
+
stopping_criteria=[stopping_criteria])
|
106 |
+
|
107 |
+
input_token_len = input_ids.shape[1]
|
108 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
109 |
+
if n_diff_input_output > 0:
|
110 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
111 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
112 |
+
outputs = outputs.strip()
|
113 |
+
if outputs.endswith(stop_str):
|
114 |
+
outputs = outputs[:-len(stop_str)]
|
115 |
+
outputs = outputs.strip()
|
116 |
+
|
117 |
+
print('response', outputs)
|
118 |
+
return outputs, state
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
title_markdown = ("""
|
123 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
124 |
+
<div>
|
125 |
+
<h1 >Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams</h1>
|
126 |
+
</div>
|
127 |
+
</div>
|
128 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
129 |
+
<div style="display:flex; gap: 0.25rem;" align="center">
|
130 |
+
<a href="https://invinciblewyq.github.io/vstream-page/"><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
131 |
+
<a href="https://arxiv.org/abs/2406.08085v1"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
|
132 |
+
<a href='https://github.com/IVGSZ/Flash-VStream'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
|
133 |
+
</div>
|
134 |
+
</div>
|
135 |
+
""")
|
136 |
+
|
137 |
+
block_css = """
|
138 |
+
#buttons button {
|
139 |
+
min-width: min(120px,100%);
|
140 |
+
}
|
141 |
+
"""
|