Spaces:
Sleeping
Sleeping
added Llama3
Browse files
app.py
CHANGED
@@ -3,8 +3,11 @@ from transformers import pipeline
|
|
3 |
from fastai.vision.all import *
|
4 |
from PIL import Image
|
5 |
import os
|
|
|
|
|
6 |
|
7 |
access_token = os.getenv("access_token")
|
|
|
8 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
9 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
10 |
app = FastAPI(docs_url="/")
|
@@ -13,6 +16,16 @@ pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
13 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
14 |
learn = load_learner('model.pkl')
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@app.get("/generate")
|
17 |
def generate(text: str):
|
18 |
"""
|
@@ -53,3 +66,36 @@ async def face_analyse(file: UploadFile = File(...)):
|
|
53 |
# Assuming categories is a list of category labels
|
54 |
return dict(zip(categories, map(float, probs)))
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from fastai.vision.all import *
|
4 |
from PIL import Image
|
5 |
import os
|
6 |
+
import io
|
7 |
+
import json
|
8 |
|
9 |
access_token = os.getenv("access_token")
|
10 |
+
|
11 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
12 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
13 |
app = FastAPI(docs_url="/")
|
|
|
16 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
17 |
learn = load_learner('model.pkl')
|
18 |
|
19 |
+
# Initialize the Code Llama Instruct pipeline (example with 7B model)
|
20 |
+
llama_model_id = "meta-llama/CodeLlama-7b-Instruct-hf"
|
21 |
+
llama_pipeline = pipeline(
|
22 |
+
"text-generation",
|
23 |
+
model=llama_model_id,
|
24 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
25 |
+
device_map="auto",
|
26 |
+
use_auth_token=access_token # Use the access token for authentication
|
27 |
+
)
|
28 |
+
|
29 |
@app.get("/generate")
|
30 |
def generate(text: str):
|
31 |
"""
|
|
|
66 |
# Assuming categories is a list of category labels
|
67 |
return dict(zip(categories, map(float, probs)))
|
68 |
|
69 |
+
@app.post("/extract-frame-details")
|
70 |
+
def extract_frame_details(text: str):
|
71 |
+
"""
|
72 |
+
Using the Code Llama Instruct pipeline from `transformers`, extract frame
|
73 |
+
details from the given input text. The model used is `meta-llama/CodeLlama-7b-Instruct-hf`.
|
74 |
+
"""
|
75 |
+
messages = [
|
76 |
+
{"role": "system", "content": "Please provide details about frames in JSON format."},
|
77 |
+
{"role": "user", "content": text},
|
78 |
+
]
|
79 |
+
|
80 |
+
terminators = [
|
81 |
+
llama_pipeline.tokenizer.eos_token_id,
|
82 |
+
llama_pipeline.tokenizer.convert_tokens_to_ids("")
|
83 |
+
]
|
84 |
+
|
85 |
+
outputs = llama_pipeline(
|
86 |
+
messages,
|
87 |
+
max_new_tokens=256,
|
88 |
+
eos_token_id=terminators,
|
89 |
+
do_sample=True,
|
90 |
+
temperature=0.6,
|
91 |
+
top_p=0.9,
|
92 |
+
)
|
93 |
+
|
94 |
+
generated_text = outputs[0]["generated_text"]
|
95 |
+
|
96 |
+
try:
|
97 |
+
extracted_info = json.loads(generated_text)
|
98 |
+
except json.JSONDecodeError:
|
99 |
+
return {"error": "Failed to parse the generated text as JSON."}
|
100 |
+
|
101 |
+
return extracted_info
|