Spaces:
Sleeping
Sleeping
edited generate code
Browse files
app.py
CHANGED
@@ -16,15 +16,6 @@ pipe = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
16 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
17 |
learn = load_learner('model.pkl')
|
18 |
|
19 |
-
# Initialize the Code Llama Instruct pipeline (example with 7B model)
|
20 |
-
llama_model_id = "meta-llama/CodeLlama-7b-Instruct-hf"
|
21 |
-
llama_pipeline = pipeline(
|
22 |
-
"text-generation",
|
23 |
-
model=llama_model_id,
|
24 |
-
model_kwargs={"torch_dtype": torch.bfloat16},
|
25 |
-
device_map="auto"
|
26 |
-
)
|
27 |
-
|
28 |
# Überprüfe, ob das Zugriffstoken vorhanden ist
|
29 |
if access_token is None:
|
30 |
raise ValueError("Access token is missing. Make sure it is set as an environment variable.")
|
@@ -69,36 +60,41 @@ async def face_analyse(file: UploadFile = File(...)):
|
|
69 |
# Assuming categories is a list of category labels
|
70 |
return dict(zip(categories, map(float, probs)))
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
"""
|
75 |
-
Using the Code Llama
|
76 |
-
|
77 |
"""
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
]
|
87 |
|
88 |
-
|
89 |
-
messages,
|
90 |
-
max_new_tokens=256,
|
91 |
-
eos_token_id=terminators,
|
92 |
-
do_sample=True,
|
93 |
-
temperature=0.6,
|
94 |
-
top_p=0.9,
|
95 |
-
)
|
96 |
-
|
97 |
-
generated_text = outputs[0]["generated_text"]
|
98 |
-
|
99 |
-
try:
|
100 |
-
extracted_info = json.loads(generated_text)
|
101 |
-
except json.JSONDecodeError:
|
102 |
-
return {"error": "Failed to parse the generated text as JSON."}
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
16 |
categories = ('Heart', 'Oblong', 'Oval', 'Round', 'Square')
|
17 |
learn = load_learner('model.pkl')
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Überprüfe, ob das Zugriffstoken vorhanden ist
|
20 |
if access_token is None:
|
21 |
raise ValueError("Access token is missing. Make sure it is set as an environment variable.")
|
|
|
60 |
# Assuming categories is a list of category labels
|
61 |
return dict(zip(categories, map(float, probs)))
|
62 |
|
63 |
+
# Initialisiere das Modell und den Tokenizer
|
64 |
+
model = "meta-llama/CodeLlama-7b-hf"
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
66 |
+
llama_pipeline = pipeline(
|
67 |
+
"text-generation",
|
68 |
+
model=model,
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
device_map="auto",
|
71 |
+
)
|
72 |
+
|
73 |
+
@app.get("/generate_json")
|
74 |
+
def generate_code(text: str):
|
75 |
"""
|
76 |
+
Using the Code Llama pipeline from `transformers`, generate code
|
77 |
+
from the given input text. The model used is `meta-llama/CodeLlama-7b-hf`.
|
78 |
"""
|
79 |
+
try:
|
80 |
+
sequences = llama_pipeline(
|
81 |
+
text,
|
82 |
+
do_sample=True,
|
83 |
+
top_k=10,
|
84 |
+
temperature=0.1,
|
85 |
+
top_p=0.95,
|
86 |
+
num_return_sequences=1,
|
87 |
+
eos_token_id=tokenizer.eos_token_id,
|
88 |
+
max_length=200,
|
89 |
+
)
|
90 |
|
91 |
+
generated_text = sequences[0]["generated_text"]
|
92 |
+
except Exception as e:
|
93 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
94 |
|
95 |
+
return {"generated_text": generated_text}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Beispielaufruf mit curl:
|
98 |
+
# curl -X 'GET' \
|
99 |
+
# 'http://localhost:8000/generate_code?text=import%20socket%0A%0Adef%20ping_exponential_backoff(host%3A%20str)%3A' \
|
100 |
+
# -H 'accept: application/json'
|