import gradio as gr import numpy as np import random import gc import json import torch import spaces from huggingface_hub import hf_hub_download from diffusers import ( AutoencoderKL, SD3Transformer2DModel, StableDiffusion3Pipeline, FlowMatchEulerDiscreteScheduler ) from diffusers.loaders.single_file_utils import ( convert_sd3_transformer_checkpoint_to_diffusers, ) from transformers import ( CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5Tokenizer ) from accelerate import init_empty_weights from accelerate.utils import set_module_tensor_to_device from safetensors import safe_open device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/stable-diffusion-3.5-large" finetune_repo_id = "DoctorDiffusion/Absynth-2.0" finetune_filename = "Absynth_SD3.5L_2.0.safetensors" if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 # Initialize transformer config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json") with open(config_file, "r") as fp: config = json.load(fp) with init_empty_weights(): transformer = SD3Transformer2DModel.from_config(config) # Get transformer state dict and load model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename) state_dict = {} with safe_open(model_file, framework="pt") as f: for key in f.keys(): state_dict[key] = f.get_tensor(key) state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict) for key, value in state_dict.items(): set_module_tensor_to_device( transformer, key, device, value=value, dtype=torch_dtype ) # Try to keep memory usage down del state_dict gc.collect() # Initialize models from base SD3.5 vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae") text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder") text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2") text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3") tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer") tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2") tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3") scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler") # Create pipeline from our models pipe = StableDiffusion3Pipeline( vae=vae, scheduler=scheduler, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer ) pipe = pipe.to(device, dtype=torch_dtype) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1536 @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "An astrounaut encounters an alien on the moon, photograph", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [Absynth 2.0](https://huggingface.co/DoctorDiffusion/Absynth-2.0) by [DoctorDiffusion](https://civitai.com/user/doctor_diffusion)") gr.Markdown("Finetuned from [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) by [Stability AI](https://stability.ai/news/introducing-stable-diffusion-3-5).") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1344, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=4.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=40, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()