benjika commited on
Commit
da88e84
·
verified ·
1 Parent(s): a3a7f89

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -58
app.py CHANGED
@@ -1,64 +1,147 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import os
2
+ import chromadb
3
  import gradio as gr
4
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
5
+ from langchain_chroma import Chroma
6
+ from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
7
+ from langchain.document_loaders import PyPDFLoader
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+ from langchain.chains import create_retrieval_chain, LLMChain
10
+ from langchain.prompts import PromptTemplate
11
+ from collections import OrderedDict
12
+
13
+ # Load embeddings model
14
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
15
+
16
+ # Load Chroma database (Avoid reprocessing documents)
17
+ CHROMA_PATH = "./chroma_db"
18
+ if not os.path.exists(CHROMA_PATH):
19
+ raise FileNotFoundError("ChromaDB folder not found. Make sure it's uploaded to the repo.")
20
+
21
+ chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
22
+ db = Chroma(embedding_function=embeddings, client=chroma_client)
23
+
24
+ # Load the model
25
+ model_name = "google/flan-t5-large"
26
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
27
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
28
+
29
+ # Create pipeline
30
+ qa_pipeline = pipeline(
31
+ "text2text-generation",
32
+ model=model,
33
+ tokenizer=tokenizer,
34
+ device=0,
35
+ max_length=512,
36
+ min_length=50,
37
+ do_sample=False,
38
+ repetition_penalty=1.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  )
40
 
41
+ # Wrap pipeline in LangChain
42
+ llm = HuggingFacePipeline(pipeline=qa_pipeline)
43
+ retriever = db.as_retriever(search_kwargs={"k": 3})
44
+
45
+
46
+ def clean_context(context_list, max_tokens=350, min_length=50):
47
+ """
48
+ Cleans retrieved document context:
49
+ - Removes duplicates while preserving order
50
+ - Limits total token count
51
+ - Ensures useful, non-repetitive context
52
+ """
53
+
54
+ # Preserve order while removing duplicates
55
+ unique_texts = list(OrderedDict.fromkeys([doc.page_content.strip() for doc in context_list]))
56
+
57
+ # Remove very short texts (e.g., headers)
58
+ filtered_texts = [text for text in unique_texts if len(text.split()) > min_length]
59
+
60
+ # Avoid near-duplicate entries
61
+ deduplicated_texts = []
62
+ seen_texts = set()
63
+ for text in filtered_texts:
64
+ if not any(text in s for s in seen_texts): # Avoid near-duplicates
65
+ deduplicated_texts.append(text)
66
+ seen_texts.add(text)
67
+
68
+ # Limit context based on token count
69
+ trimmed_context = []
70
+ total_tokens = 0
71
+ for text in deduplicated_texts:
72
+ tokenized_text = tokenizer.encode(text, add_special_tokens=False)
73
+ token_count = len(tokenized_text)
74
+
75
+ if total_tokens + token_count > max_tokens:
76
+ remaining_tokens = max_tokens - total_tokens
77
+ if remaining_tokens > 20:
78
+ trimmed_context.append(tokenizer.decode(tokenized_text[:remaining_tokens]))
79
+ break
80
+
81
+ trimmed_context.append(text)
82
+ total_tokens += token_count
83
+
84
+ return "\n\n".join(trimmed_context) if trimmed_context else "No relevant context found."
85
+
86
+ # Define prompt
87
+ prompt_template = PromptTemplate(
88
+ template="""
89
+ You are a Kubernetes instructor. Answer the question based on the provided context.
90
+ If the context does not provide an answer, say "I don't have enough information."
91
+
92
+ Context:
93
+ {context}
94
+
95
+ Question:
96
+ {input}
97
+
98
+ Answer:
99
+ """,
100
+ input_variables=["context", "input"]
101
+ )
102
+
103
+ llm_chain = LLMChain(llm=llm, prompt=prompt_template)
104
+ qa_chain = create_retrieval_chain(retriever, llm_chain)
105
+
106
+ # Query function
107
+ def get_k8s_answer(query):
108
+ retrieved_context = retriever.get_relevant_documents(query)
109
+ cleaned_context = clean_context(retrieved_context, max_tokens=350) # Ensure context size is within limits
110
+
111
+ # Ensure total input tokens < 512 before passing to model
112
+ input_text = f"Context:\n{cleaned_context}\n\nQuestion: {query}\nAnswer:"
113
+ total_tokens = len(tokenizer.encode(input_text, add_special_tokens=True))
114
+
115
+ if total_tokens > 512:
116
+ # Trim context further to fit within the limit
117
+ allowed_tokens = 512 - len(tokenizer.encode(query, add_special_tokens=True)) - 50 # 50 tokens for the model's response
118
+ cleaned_context = clean_context(retrieved_context, max_tokens=allowed_tokens)
119
+
120
+ # Recalculate total tokens
121
+ input_text = f"Context:\n{cleaned_context}\n\nQuestion: {query}\nAnswer:"
122
+ total_tokens = len(tokenizer.encode(input_text, add_special_tokens=True))
123
+
124
+ if total_tokens > 512:
125
+ return "Error: Even after trimming, input is too large."
126
+
127
+ response = qa_chain.invoke({"input": query, "context": cleaned_context})
128
+ return response
129
+
130
+ def get_k8s_answer_text(query):
131
+ model_full_answer = get_k8s_answer(query)
132
+ if 'answer' in model_full_answer.keys():
133
+ if 'text' in model_full_answer['answer'].keys():
134
+ return model_full_answer['answer']['text']
135
+ return "Error"
136
+
137
+ # Gradio Interface
138
+ demo = gr.Interface(
139
+ fn=get_k8s_answer_text,
140
+ inputs=gr.Textbox(label="Ask a Kubernetes Question"),
141
+ outputs=gr.Textbox(label="Answer"),
142
+ title="Kubernetes RAG Assistant",
143
+ description="Ask any Kubernetes-related question and get a step-by-step answer based on documentation."
144
+ )
145
 
146
  if __name__ == "__main__":
147
  demo.launch()