Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,147 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import chromadb
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
5 |
+
from langchain_chroma import Chroma
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.chains import create_retrieval_chain, LLMChain
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from collections import OrderedDict
|
12 |
+
|
13 |
+
# Load embeddings model
|
14 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
15 |
+
|
16 |
+
# Load Chroma database (Avoid reprocessing documents)
|
17 |
+
CHROMA_PATH = "./chroma_db"
|
18 |
+
if not os.path.exists(CHROMA_PATH):
|
19 |
+
raise FileNotFoundError("ChromaDB folder not found. Make sure it's uploaded to the repo.")
|
20 |
+
|
21 |
+
chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
|
22 |
+
db = Chroma(embedding_function=embeddings, client=chroma_client)
|
23 |
+
|
24 |
+
# Load the model
|
25 |
+
model_name = "google/flan-t5-large"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
28 |
+
|
29 |
+
# Create pipeline
|
30 |
+
qa_pipeline = pipeline(
|
31 |
+
"text2text-generation",
|
32 |
+
model=model,
|
33 |
+
tokenizer=tokenizer,
|
34 |
+
device=0,
|
35 |
+
max_length=512,
|
36 |
+
min_length=50,
|
37 |
+
do_sample=False,
|
38 |
+
repetition_penalty=1.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
+
# Wrap pipeline in LangChain
|
42 |
+
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
43 |
+
retriever = db.as_retriever(search_kwargs={"k": 3})
|
44 |
+
|
45 |
+
|
46 |
+
def clean_context(context_list, max_tokens=350, min_length=50):
|
47 |
+
"""
|
48 |
+
Cleans retrieved document context:
|
49 |
+
- Removes duplicates while preserving order
|
50 |
+
- Limits total token count
|
51 |
+
- Ensures useful, non-repetitive context
|
52 |
+
"""
|
53 |
+
|
54 |
+
# Preserve order while removing duplicates
|
55 |
+
unique_texts = list(OrderedDict.fromkeys([doc.page_content.strip() for doc in context_list]))
|
56 |
+
|
57 |
+
# Remove very short texts (e.g., headers)
|
58 |
+
filtered_texts = [text for text in unique_texts if len(text.split()) > min_length]
|
59 |
+
|
60 |
+
# Avoid near-duplicate entries
|
61 |
+
deduplicated_texts = []
|
62 |
+
seen_texts = set()
|
63 |
+
for text in filtered_texts:
|
64 |
+
if not any(text in s for s in seen_texts): # Avoid near-duplicates
|
65 |
+
deduplicated_texts.append(text)
|
66 |
+
seen_texts.add(text)
|
67 |
+
|
68 |
+
# Limit context based on token count
|
69 |
+
trimmed_context = []
|
70 |
+
total_tokens = 0
|
71 |
+
for text in deduplicated_texts:
|
72 |
+
tokenized_text = tokenizer.encode(text, add_special_tokens=False)
|
73 |
+
token_count = len(tokenized_text)
|
74 |
+
|
75 |
+
if total_tokens + token_count > max_tokens:
|
76 |
+
remaining_tokens = max_tokens - total_tokens
|
77 |
+
if remaining_tokens > 20:
|
78 |
+
trimmed_context.append(tokenizer.decode(tokenized_text[:remaining_tokens]))
|
79 |
+
break
|
80 |
+
|
81 |
+
trimmed_context.append(text)
|
82 |
+
total_tokens += token_count
|
83 |
+
|
84 |
+
return "\n\n".join(trimmed_context) if trimmed_context else "No relevant context found."
|
85 |
+
|
86 |
+
# Define prompt
|
87 |
+
prompt_template = PromptTemplate(
|
88 |
+
template="""
|
89 |
+
You are a Kubernetes instructor. Answer the question based on the provided context.
|
90 |
+
If the context does not provide an answer, say "I don't have enough information."
|
91 |
+
|
92 |
+
Context:
|
93 |
+
{context}
|
94 |
+
|
95 |
+
Question:
|
96 |
+
{input}
|
97 |
+
|
98 |
+
Answer:
|
99 |
+
""",
|
100 |
+
input_variables=["context", "input"]
|
101 |
+
)
|
102 |
+
|
103 |
+
llm_chain = LLMChain(llm=llm, prompt=prompt_template)
|
104 |
+
qa_chain = create_retrieval_chain(retriever, llm_chain)
|
105 |
+
|
106 |
+
# Query function
|
107 |
+
def get_k8s_answer(query):
|
108 |
+
retrieved_context = retriever.get_relevant_documents(query)
|
109 |
+
cleaned_context = clean_context(retrieved_context, max_tokens=350) # Ensure context size is within limits
|
110 |
+
|
111 |
+
# Ensure total input tokens < 512 before passing to model
|
112 |
+
input_text = f"Context:\n{cleaned_context}\n\nQuestion: {query}\nAnswer:"
|
113 |
+
total_tokens = len(tokenizer.encode(input_text, add_special_tokens=True))
|
114 |
+
|
115 |
+
if total_tokens > 512:
|
116 |
+
# Trim context further to fit within the limit
|
117 |
+
allowed_tokens = 512 - len(tokenizer.encode(query, add_special_tokens=True)) - 50 # 50 tokens for the model's response
|
118 |
+
cleaned_context = clean_context(retrieved_context, max_tokens=allowed_tokens)
|
119 |
+
|
120 |
+
# Recalculate total tokens
|
121 |
+
input_text = f"Context:\n{cleaned_context}\n\nQuestion: {query}\nAnswer:"
|
122 |
+
total_tokens = len(tokenizer.encode(input_text, add_special_tokens=True))
|
123 |
+
|
124 |
+
if total_tokens > 512:
|
125 |
+
return "Error: Even after trimming, input is too large."
|
126 |
+
|
127 |
+
response = qa_chain.invoke({"input": query, "context": cleaned_context})
|
128 |
+
return response
|
129 |
+
|
130 |
+
def get_k8s_answer_text(query):
|
131 |
+
model_full_answer = get_k8s_answer(query)
|
132 |
+
if 'answer' in model_full_answer.keys():
|
133 |
+
if 'text' in model_full_answer['answer'].keys():
|
134 |
+
return model_full_answer['answer']['text']
|
135 |
+
return "Error"
|
136 |
+
|
137 |
+
# Gradio Interface
|
138 |
+
demo = gr.Interface(
|
139 |
+
fn=get_k8s_answer_text,
|
140 |
+
inputs=gr.Textbox(label="Ask a Kubernetes Question"),
|
141 |
+
outputs=gr.Textbox(label="Answer"),
|
142 |
+
title="Kubernetes RAG Assistant",
|
143 |
+
description="Ask any Kubernetes-related question and get a step-by-step answer based on documentation."
|
144 |
+
)
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
demo.launch()
|