File size: 4,814 Bytes
d347764
 
 
 
5cdac43
 
 
 
 
d347764
 
 
 
 
5cdac43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347764
5cdac43
 
 
 
 
 
 
 
d347764
5cdac43
 
 
 
 
 
d347764
5cdac43
 
d347764
 
 
5cdac43
 
 
 
 
d347764
 
 
 
5cdac43
 
 
 
 
 
 
 
 
 
d347764
 
 
 
 
 
 
 
 
f805e49
 
c6f1d54
 
f805e49
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
3946ba6
c737803
5cdac43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import numpy as np
import torch

from transformers import (
    VitsModel,
    VitsTokenizer,
    pipeline
)


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-base",
    device=device
)

model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")


def translate(audio):
    outputs = asr_pipe(
        audio,
        max_new_tokens=256,
        generate_kwargs={"task": "transcribe", "language": "de"}
    )
    return outputs["text"]


def synthesise(text):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    inputs = tokenizer(text, return_tensors="pt")
    input_ids = inputs["input_ids"]

    with torch.no_grad():
        outputs = model(input_ids)

    speech = outputs.audio[0]
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech

title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)
file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()import gradio as gr
import numpy as np
import torch

from transformers import (
    VitsModel,
    VitsTokenizer,
    pipeline
)


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-base",
    device=device
)

model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")


def translate(audio):
    outputs = asr_pipe(
        audio,
        max_new_tokens=256,
        generate_kwargs={"task": "transcribe", "language": "de"}
    )
    return outputs["text"]


def synthesise(text):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    inputs = tokenizer(text, return_tensors="pt")
    input_ids = inputs["input_ids"]

    with torch.no_grad():
        outputs = model(input_ids)

    speech = outputs.audio[0]
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech

title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)
file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()