Spaces:
Paused
Paused
changing processor to use gpu
Browse files- backend/main.py +3 -3
backend/main.py
CHANGED
@@ -297,13 +297,13 @@ async def incoming_audio(sid, data, call_id):
|
|
297 |
tgt_sid = next(id for id in rooms[call_id] if id != sid)
|
298 |
tgt_lang = clients[tgt_sid].target_language
|
299 |
# following example from https://github.com/facebookresearch/seamless_communication/blob/main/docs/m4t/README.md#transformers-usage
|
300 |
-
output_tokens = processor(audios=resampled_audio, src_lang=src_lang, return_tensors="pt")
|
301 |
model_output = model.generate(**output_tokens, tgt_lang=src_lang, generate_speech=False)[0].tolist()[0]
|
302 |
asr_text = processor.decode(model_output, skip_special_tokens=True)
|
303 |
print(f"ASR TEXT = {asr_text}")
|
304 |
# ASR TEXT => ORIGINAL TEXT
|
305 |
|
306 |
-
t2t_tokens = processor(text=asr_text, src_lang=src_lang, tgt_lang=tgt_lang, return_tensors="pt")
|
307 |
print(f"FIRST TYPE = {type(output_tokens)}, SECOND TYPE = {type(t2t_tokens)}")
|
308 |
translated_data = model.generate(**t2t_tokens, tgt_lang=tgt_lang, generate_speech=False)[0].tolist()[0]
|
309 |
translated_text = processor.decode(translated_data, skip_special_tokens=True)
|
@@ -339,7 +339,7 @@ def send_captions(client_id, original_text, translated_text, call_id):
|
|
339 |
app.mount("/", socketio_app)
|
340 |
|
341 |
if __name__ == '__main__':
|
342 |
-
uvicorn.run("main:app", host='
|
343 |
|
344 |
# Running in Docker Container
|
345 |
if __name__ != "__main__":
|
|
|
297 |
tgt_sid = next(id for id in rooms[call_id] if id != sid)
|
298 |
tgt_lang = clients[tgt_sid].target_language
|
299 |
# following example from https://github.com/facebookresearch/seamless_communication/blob/main/docs/m4t/README.md#transformers-usage
|
300 |
+
output_tokens = processor(audios=resampled_audio, src_lang=src_lang, return_tensors="pt").to(device)
|
301 |
model_output = model.generate(**output_tokens, tgt_lang=src_lang, generate_speech=False)[0].tolist()[0]
|
302 |
asr_text = processor.decode(model_output, skip_special_tokens=True)
|
303 |
print(f"ASR TEXT = {asr_text}")
|
304 |
# ASR TEXT => ORIGINAL TEXT
|
305 |
|
306 |
+
t2t_tokens = processor(text=asr_text, src_lang=src_lang, tgt_lang=tgt_lang, return_tensors="pt").to(device)
|
307 |
print(f"FIRST TYPE = {type(output_tokens)}, SECOND TYPE = {type(t2t_tokens)}")
|
308 |
translated_data = model.generate(**t2t_tokens, tgt_lang=tgt_lang, generate_speech=False)[0].tolist()[0]
|
309 |
translated_text = processor.decode(translated_data, skip_special_tokens=True)
|
|
|
339 |
app.mount("/", socketio_app)
|
340 |
|
341 |
if __name__ == '__main__':
|
342 |
+
uvicorn.run("main:app", host='0.0.0.0', port=7860, log_level="info")
|
343 |
|
344 |
# Running in Docker Container
|
345 |
if __name__ != "__main__":
|