benjosaur commited on
Commit
3869fd1
·
1 Parent(s): 81917a3

Complete Draft

Browse files
Files changed (5) hide show
  1. .gitignore +3 -0
  2. app.py +85 -32
  3. search.py +68 -0
  4. tools.py +192 -0
  5. utils.py +52 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .env
2
+ __pycache__
3
+ *.pyc
app.py CHANGED
@@ -3,32 +3,63 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
 
 
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
 
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
 
 
13
  class BasicAgent:
14
  def __init__(self):
 
15
  print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -55,16 +86,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -76,23 +107,42 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
 
79
  if not task_id or question_text is None:
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
98
 
@@ -162,20 +212,19 @@ with gr.Blocks() as demo:
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
 
166
  # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,14 +232,18 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
 
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
192
 
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from llama_index.core.agent.workflow import AgentWorkflow, ToolCallResult, AgentStream
7
+ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
8
+ from tools import APIProcessor, parse_youtube_video, transcribe_image_from_link
9
+ from search import GoogleSearch
10
+ from dotenv import load_dotenv
11
 
12
  # (Keep Constants as is)
13
  # --- Constants ---
14
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
 
16
+
17
  # --- Basic Agent Definition ---
18
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
19
+
20
+ SYSTEM_PROMPT = "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
21
+
22
+
23
  class BasicAgent:
24
  def __init__(self):
25
+ self.llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
26
  print("BasicAgent initialized.")
 
 
 
 
 
27
 
28
+ def __call__(self, question: str, task_id: str, file_name: str) -> str:
29
+ google_search = GoogleSearch().google_search
30
+ google_image_search = GoogleSearch().google_image_search
31
+
32
+ get_and_process_question_attachment = APIProcessor(
33
+ file_url=DEFAULT_API_URL + "/files/" + task_id, file_name=file_name
34
+ ).get_and_process_attachment()
35
+
36
+ agent = AgentWorkflow.from_tools_or_functions(
37
+ [
38
+ google_search,
39
+ google_image_search,
40
+ get_and_process_question_attachment,
41
+ parse_youtube_video,
42
+ transcribe_image_from_link,
43
+ ],
44
+ llm=self.llm,
45
+ system_prompt=SYSTEM_PROMPT,
46
+ )
47
+
48
+ response = agent.run(question)
49
+
50
+ return response
51
+
52
+
53
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
54
  """
55
  Fetches all questions, runs the BasicAgent on them, submits all answers,
56
  and displays the results.
57
  """
58
  # --- Determine HF Space Runtime URL and Repo URL ---
59
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
60
 
61
  if profile:
62
+ username = f"{profile.username}"
63
  print(f"User logged in: {username}")
64
  else:
65
  print("User not logged in.")
 
86
  response.raise_for_status()
87
  questions_data = response.json()
88
  if not questions_data:
89
+ print("Fetched questions list is empty.")
90
+ return "Fetched questions list is empty or invalid format.", None
91
  print(f"Fetched {len(questions_data)} questions.")
92
  except requests.exceptions.RequestException as e:
93
  print(f"Error fetching questions: {e}")
94
  return f"Error fetching questions: {e}", None
95
  except requests.exceptions.JSONDecodeError as e:
96
+ print(f"Error decoding JSON response from questions endpoint: {e}")
97
+ print(f"Response text: {response.text[:500]}")
98
+ return f"Error decoding server response for questions: {e}", None
99
  except Exception as e:
100
  print(f"An unexpected error occurred fetching questions: {e}")
101
  return f"An unexpected error occurred fetching questions: {e}", None
 
107
  for item in questions_data:
108
  task_id = item.get("task_id")
109
  question_text = item.get("question")
110
+ file_name = item.get("file_name")
111
  if not task_id or question_text is None:
112
  print(f"Skipping item with missing task_id or question: {item}")
113
  continue
114
  try:
115
+ submitted_answer = agent(question_text, task_id, file_name)
116
+ answers_payload.append(
117
+ {"task_id": task_id, "submitted_answer": submitted_answer}
118
+ )
119
+ results_log.append(
120
+ {
121
+ "Task ID": task_id,
122
+ "Question": question_text,
123
+ "Submitted Answer": submitted_answer,
124
+ }
125
+ )
126
  except Exception as e:
127
+ print(f"Error running agent on task {task_id}: {e}")
128
+ results_log.append(
129
+ {
130
+ "Task ID": task_id,
131
+ "Question": question_text,
132
+ "Submitted Answer": f"AGENT ERROR: {e}",
133
+ }
134
+ )
135
 
136
  if not answers_payload:
137
  print("Agent did not produce any answers to submit.")
138
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
139
 
140
+ # 4. Prepare Submission
141
+ submission_data = {
142
+ "username": username.strip(),
143
+ "agent_code": agent_code,
144
+ "answers": answers_payload,
145
+ }
146
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
147
  print(status_update)
148
 
 
212
 
213
  run_button = gr.Button("Run Evaluation & Submit All Answers")
214
 
215
+ status_output = gr.Textbox(
216
+ label="Run Status / Submission Result", lines=5, interactive=False
217
+ )
218
  # Removed max_rows=10 from DataFrame constructor
219
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
220
 
221
+ run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
 
 
 
222
 
223
  if __name__ == "__main__":
224
+ print("\n" + "-" * 30 + " App Starting " + "-" * 30)
225
  # Check for SPACE_HOST and SPACE_ID at startup for information
226
  space_host_startup = os.getenv("SPACE_HOST")
227
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
228
 
229
  if space_host_startup:
230
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
232
  else:
233
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
234
 
235
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
236
  print(f"✅ SPACE_ID found: {space_id_startup}")
237
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
238
+ print(
239
+ f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
240
+ )
241
  else:
242
+ print(
243
+ "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
244
+ )
245
 
246
+ print("-" * (60 + len(" App Starting ")) + "\n")
247
 
248
  print("Launching Gradio Interface for Basic Agent Evaluation...")
249
+ demo.launch(debug=True, share=False)
search.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ import os
3
+ import aiohttp
4
+
5
+
6
+ class GoogleSearch:
7
+ def __init__(self):
8
+ load_dotenv()
9
+ self.api_key = os.environ["GOOGLE_API_KEY"]
10
+ self.cse_id = os.getenv("GOOGLE_CSE_ID")
11
+
12
+ async def google_search(self, query: str, num_results: int = 5) -> str:
13
+ """
14
+ Args:
15
+ query: Search query
16
+ num_results: Max results to return
17
+ Returns:
18
+ dict: JSON response from Google API.
19
+ """
20
+
21
+ if not self.api_key or not self.cse_id:
22
+ raise ValueError(
23
+ "GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables."
24
+ )
25
+
26
+ url = "https://www.googleapis.com/customsearch/v1"
27
+ params = {"key": self.api_key, "cx": self.cse_id, "q": query}
28
+
29
+ async with aiohttp.ClientSession() as session:
30
+ async with session.get(url, params=params) as response:
31
+ response.raise_for_status()
32
+ data = await response.json()
33
+ results = "Web Search results:\n\n" + "\n\n".join(
34
+ [
35
+ f"Link:{result['link']}\nTitle:{result['title']}\nSnippet:{result['snippet']}"
36
+ for result in data["items"][:num_results]
37
+ ]
38
+ )
39
+ return results
40
+
41
+ async def google_image_search(self, query: str, num_results: int = 5) -> str:
42
+ """
43
+ Args:
44
+ query: Search query
45
+ num_results: Max results to return
46
+ Returns:
47
+ dict: JSON response from Google API.
48
+ """
49
+
50
+ if not self.api_key or not self.cse_id:
51
+ raise ValueError(
52
+ "GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables."
53
+ )
54
+
55
+ url = "https://www.googleapis.com/customsearch/v1"
56
+ params = {"key": self.api_key, "cx": self.cse_id, "q": query}
57
+
58
+ async with aiohttp.ClientSession() as session:
59
+ async with session.get(url, params=params) as response:
60
+ response.raise_for_status()
61
+ data = await response.json()
62
+ results = "Web Search results:\n\n" + "\n\n".join(
63
+ [
64
+ f"Link:{result['link']}\nTitle:{result['title']}"
65
+ for result in data["items"][:num_results]
66
+ ]
67
+ )
68
+ return results
tools.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from dotenv import load_dotenv
3
+ from openai import OpenAI
4
+ from utils import process_image_for_gpt
5
+ import pandas as pd
6
+ import tempfile
7
+ import os
8
+ import io
9
+ import yt_dlp
10
+
11
+
12
+ def transcribe_image_from_link(image_link: str) -> str:
13
+ """
14
+ Args:
15
+ image_link (str): URL of the image to transcribe
16
+ """
17
+ client = OpenAI() # Uses OPENAI_API_KEY environment variable
18
+
19
+ response = client.chat.completions.create(
20
+ model="gpt-4o",
21
+ messages=[
22
+ {
23
+ "role": "user",
24
+ "content": [
25
+ {
26
+ "type": "text",
27
+ "text": """Please transcribe all text visible in this image.
28
+ Extract the text exactly as it appears, maintaining formatting when possible.
29
+ If there's no readable text, respond with 'No text found in image'.""",
30
+ },
31
+ {
32
+ "type": "image_url",
33
+ "image_url": {
34
+ "url": image_link,
35
+ "detail": "high",
36
+ },
37
+ },
38
+ ],
39
+ }
40
+ ],
41
+ max_tokens=1000,
42
+ temperature=0,
43
+ )
44
+
45
+ transcribed_text = response.choices[0].message.content.strip()
46
+ return transcribed_text
47
+
48
+
49
+ def parse_youtube_video(youtube_url: str) -> str:
50
+ """Returns text transcript of a youtube video
51
+ Args:
52
+ youtube_url: the full url linking to the video to transcribe
53
+ """
54
+ load_dotenv()
55
+ client = OpenAI()
56
+
57
+ # Configure yt-dlp to extract audio
58
+ ydl_opts = {
59
+ "format": "bestaudio/best",
60
+ "postprocessors": [
61
+ {
62
+ "key": "FFmpegExtractAudio",
63
+ "preferredcodec": "mp3",
64
+ "preferredquality": "192",
65
+ }
66
+ ],
67
+ "outtmpl": "%(title)s.%(ext)s",
68
+ }
69
+
70
+ with tempfile.TemporaryDirectory() as temp_dir:
71
+ ydl_opts["outtmpl"] = os.path.join(temp_dir, "%(title)s.%(ext)s")
72
+
73
+ # Download audio
74
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
75
+ info = ydl.extract_info(youtube_url, download=True)
76
+ title = info["title"]
77
+
78
+ # Find the downloaded audio file
79
+ audio_file = None
80
+ for file in os.listdir(temp_dir):
81
+ if file.endswith(".mp3"):
82
+ audio_file = os.path.join(temp_dir, file)
83
+ break
84
+
85
+ if not audio_file:
86
+ raise Exception("Audio file not found")
87
+
88
+ # Transcribe with Whisper
89
+ with open(audio_file, "rb") as audio:
90
+ transcript = client.audio.transcriptions.create(
91
+ model="gpt-4o-transcribe", file=audio
92
+ )
93
+
94
+ return {"title": title, "transcript": transcript.text}
95
+
96
+
97
+ class APIProcessor:
98
+ def __init__(self, file_url: str, file_name: str):
99
+ load_dotenv()
100
+ self.file_url = file_url
101
+ self.file_name = file_name
102
+ self.client = OpenAI()
103
+
104
+ def _transcribe_mp3(self, response: requests.Response) -> str:
105
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
106
+ for chunk in response.iter_content(chunk_size=8192):
107
+ temp_file.write(chunk)
108
+ temp_file_path = temp_file.name
109
+
110
+ try:
111
+ with open(temp_file_path, "rb") as audio_file:
112
+ transcription = self.client.audio.transcriptions.create(
113
+ model="gpt-4o-transcribe",
114
+ file=audio_file,
115
+ )
116
+ return transcription.text
117
+ except Exception as e:
118
+ print(str(e))
119
+ finally:
120
+ os.unlink(temp_file_path)
121
+
122
+ def _transcribe_image(self, response: requests.Response) -> str:
123
+ image_bytes = response.content
124
+ base64_image = process_image_for_gpt(image_bytes)
125
+ TRANSCRIPTION_PROMPT = """Please in detail transcribe as much of the output information you can via text. Feel free to use ASCII."""
126
+ image_message = [
127
+ {"type": "text", "text": TRANSCRIPTION_PROMPT},
128
+ {
129
+ "type": "image_url",
130
+ "image_url": {
131
+ "url": f"data:image/jpeg;base64,{base64_image}",
132
+ },
133
+ },
134
+ ]
135
+ response = self.client.chat.completions.create(
136
+ model="gpt-4o",
137
+ messages=[{"role": "user", "content": image_message}],
138
+ max_tokens=1000,
139
+ )
140
+ return response.choices[0].message.content
141
+
142
+ def _transcribe_spreadsheet(self, response: requests.Response) -> str:
143
+ try:
144
+ excel_data = io.BytesIO(response.content)
145
+ excel_file = pd.ExcelFile(excel_data)
146
+ sheets = excel_file.sheet_names
147
+ all_sheets_data = {}
148
+
149
+ for sheet in sheets:
150
+ df = excel_file.parse(sheet_name=sheet)
151
+ all_sheets_data[sheet] = df.to_string()
152
+
153
+ return str(all_sheets_data)
154
+ except Exception as e:
155
+ return f"Error processing spreadsheet: {e}"
156
+
157
+ def get_and_process_attachment(self) -> str:
158
+ """For current question, download and process the file associated if it exists.
159
+ Returns:
160
+ Parsed text output of the attachment
161
+ """
162
+ response = requests.get(self.file_url, timeout=15)
163
+ response.raise_for_status()
164
+
165
+ file_extension = self.file_name.split(".")[-1]
166
+
167
+ if file_extension == "mp3":
168
+ parsed_text = self._transcribe_mp3(response)
169
+ elif file_extension == "xlsx":
170
+ parsed_text = self._transcribe_spreadsheet(response)
171
+ elif file_extension == "png":
172
+ parsed_text = self._transcribe_image(response)
173
+ else:
174
+ parsed_text = response.content
175
+
176
+ return parsed_text
177
+
178
+
179
+ if __name__ == "__main__":
180
+ # attempt to process file examples from API
181
+ # def get_file_api_url(task_id: str) -> str:
182
+ # return "https://agents-course-unit4-scoring.hf.space" + "/files/" + task_id
183
+
184
+ # audio_task_processor = APIProcessor(
185
+ # file_name="7bd855d8-463d-4ed5-93ca-5fe35145f733.xlsx",
186
+ # file_url=get_file_api_url("7bd855d8-463d-4ed5-93ca-5fe35145f733"),
187
+ # )
188
+
189
+ # response = audio_task_processor.get_and_process_attachment()
190
+ # print(response)
191
+ result = parse_youtube_video("https://www.youtube.com/watch?v=1htKBjuUWec")
192
+ print(result)
utils.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from io import BytesIO
3
+ import base64
4
+
5
+
6
+ def encode_image_in_base64(image: bytes):
7
+ return base64.b64encode(image).decode("utf-8")
8
+
9
+
10
+ def replace_transparent_pixels(image_bytes: bytes):
11
+ """
12
+ Opens a PNG image, and replaces transparent pixels with white pixels.
13
+
14
+ Args:
15
+ image_path: The path to the PNG image.
16
+
17
+ Returns:
18
+ The path to the modified image.
19
+ """
20
+ try:
21
+ img = Image.open(BytesIO(image_bytes))
22
+ img = img.convert("RGBA")
23
+
24
+ pixels = img.getdata()
25
+
26
+ new_pixels = []
27
+ for item in pixels:
28
+ if item[3] == 0:
29
+ new_pixels.append((255, 255, 255, 255))
30
+ else:
31
+ new_pixels.append(item)
32
+
33
+ img.putdata(new_pixels)
34
+
35
+ img_byte_arr = BytesIO()
36
+ img.save(img_byte_arr, format="PNG")
37
+ img_byte_arr = img_byte_arr.getvalue()
38
+
39
+ return img_byte_arr
40
+
41
+ except FileNotFoundError:
42
+ print(f"Error: The file was not found.")
43
+ return None
44
+ except Exception as e:
45
+ print(f"An error occurred: {e}")
46
+ return None
47
+
48
+
49
+ def process_image_for_gpt(image_bytes: bytes) -> str:
50
+ image_bytes = replace_transparent_pixels(image_bytes)
51
+ base64_image = encode_image_in_base64(image_bytes)
52
+ return base64_image