Spaces:
Sleeping
Sleeping
Local Submitting Solution
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
-
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
@@ -9,8 +10,9 @@ from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
|
9 |
from tools import (
|
10 |
APIProcessor,
|
11 |
parse_youtube_video,
|
12 |
-
|
13 |
transcribe_webpage,
|
|
|
14 |
)
|
15 |
from utils import format_final_answer
|
16 |
from search import GoogleSearch
|
@@ -42,18 +44,25 @@ class BasicAgent:
|
|
42 |
|
43 |
agent = AgentWorkflow.from_tools_or_functions(
|
44 |
[
|
|
|
45 |
google_search,
|
46 |
google_image_search,
|
47 |
-
get_and_process_question_attachment,
|
48 |
parse_youtube_video,
|
49 |
-
|
50 |
transcribe_webpage,
|
51 |
],
|
52 |
llm=self.llm,
|
53 |
system_prompt=SYSTEM_PROMPT,
|
54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
ctx = Context(agent)
|
56 |
-
handler = agent.run(
|
57 |
async for ev in handler.stream_events():
|
58 |
if isinstance(ev, ToolCallResult):
|
59 |
print("")
|
@@ -70,7 +79,8 @@ class BasicAgent:
|
|
70 |
return final_answer
|
71 |
|
72 |
|
73 |
-
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
74 |
"""
|
75 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
76 |
and displays the results.
|
@@ -78,12 +88,13 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
78 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
79 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
80 |
|
81 |
-
if profile:
|
82 |
-
|
83 |
-
|
84 |
-
else:
|
85 |
-
|
86 |
-
|
|
|
87 |
|
88 |
api_url = DEFAULT_API_URL
|
89 |
questions_url = f"{api_url}/questions"
|
@@ -124,7 +135,7 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
124 |
results_log = []
|
125 |
answers_payload = []
|
126 |
print(f"Running agent on {len(questions_data)} questions...")
|
127 |
-
|
128 |
task_id = item.get("task_id")
|
129 |
question_text = item.get("question")
|
130 |
file_name = item.get("file_name")
|
@@ -133,6 +144,9 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
133 |
continue
|
134 |
try:
|
135 |
submitted_answer = await agent(question_text, task_id, file_name)
|
|
|
|
|
|
|
136 |
answers_payload.append(
|
137 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
138 |
)
|
@@ -164,6 +178,7 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
164 |
"answers": answers_payload,
|
165 |
}
|
166 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
|
|
167 |
print(status_update)
|
168 |
|
169 |
# 5. Submit
|
@@ -210,61 +225,89 @@ async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
210 |
return status_message, results_df
|
211 |
|
212 |
|
213 |
-
# --- Build Gradio Interface using Blocks ---
|
214 |
-
with gr.Blocks() as demo:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
-
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
246 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
247 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
248 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
249 |
-
|
250 |
-
if space_host_startup:
|
251 |
-
|
252 |
-
|
253 |
-
else:
|
254 |
-
|
255 |
-
|
256 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
else:
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
print("-" * (60 + len(" App Starting ")) + "\n")
|
268 |
-
|
269 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
270 |
-
demo.launch(debug=True, share=False)
|
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
# import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
|
|
10 |
from tools import (
|
11 |
APIProcessor,
|
12 |
parse_youtube_video,
|
13 |
+
transcribe_image_from_url,
|
14 |
transcribe_webpage,
|
15 |
+
add_numbers,
|
16 |
)
|
17 |
from utils import format_final_answer
|
18 |
from search import GoogleSearch
|
|
|
44 |
|
45 |
agent = AgentWorkflow.from_tools_or_functions(
|
46 |
[
|
47 |
+
add_numbers,
|
48 |
google_search,
|
49 |
google_image_search,
|
|
|
50 |
parse_youtube_video,
|
51 |
+
transcribe_image_from_url,
|
52 |
transcribe_webpage,
|
53 |
],
|
54 |
llm=self.llm,
|
55 |
system_prompt=SYSTEM_PROMPT,
|
56 |
)
|
57 |
+
|
58 |
+
attached_contents = get_and_process_question_attachment()
|
59 |
+
|
60 |
+
user_message = (
|
61 |
+
question + f"\n\nContents of attached file: {file_name}" + attached_contents
|
62 |
+
)
|
63 |
+
|
64 |
ctx = Context(agent)
|
65 |
+
handler = agent.run(user_message, ctx=ctx)
|
66 |
async for ev in handler.stream_events():
|
67 |
if isinstance(ev, ToolCallResult):
|
68 |
print("")
|
|
|
79 |
return final_answer
|
80 |
|
81 |
|
82 |
+
# async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
83 |
+
async def run_and_submit_all():
|
84 |
"""
|
85 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
86 |
and displays the results.
|
|
|
88 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
89 |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
90 |
|
91 |
+
# if profile:
|
92 |
+
# username = f"{profile.username}"
|
93 |
+
# print(f"User logged in: {username}")
|
94 |
+
# else:
|
95 |
+
# print("User not logged in.")
|
96 |
+
# return "Please Login to Hugging Face with the button.", None
|
97 |
+
username = "benjosaur"
|
98 |
|
99 |
api_url = DEFAULT_API_URL
|
100 |
questions_url = f"{api_url}/questions"
|
|
|
135 |
results_log = []
|
136 |
answers_payload = []
|
137 |
print(f"Running agent on {len(questions_data)} questions...")
|
138 |
+
for item in questions_data:
|
139 |
task_id = item.get("task_id")
|
140 |
question_text = item.get("question")
|
141 |
file_name = item.get("file_name")
|
|
|
144 |
continue
|
145 |
try:
|
146 |
submitted_answer = await agent(question_text, task_id, file_name)
|
147 |
+
print(f"Submitted Answer: {submitted_answer}")
|
148 |
+
print("==" * 50)
|
149 |
+
print("")
|
150 |
answers_payload.append(
|
151 |
{"task_id": task_id, "submitted_answer": submitted_answer}
|
152 |
)
|
|
|
178 |
"answers": answers_payload,
|
179 |
}
|
180 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
181 |
+
print(f"ANSWERS PAYLOAD: {answers_payload}")
|
182 |
print(status_update)
|
183 |
|
184 |
# 5. Submit
|
|
|
225 |
return status_message, results_df
|
226 |
|
227 |
|
228 |
+
# # --- Build Gradio Interface using Blocks ---
|
229 |
+
# with gr.Blocks() as demo:
|
230 |
+
# gr.Markdown("# Basic Agent Evaluation Runner")
|
231 |
+
# gr.Markdown(
|
232 |
+
# """
|
233 |
+
# **Instructions:**
|
234 |
+
|
235 |
+
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
236 |
+
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
237 |
+
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
238 |
+
|
239 |
+
# ---
|
240 |
+
# **Disclaimers:**
|
241 |
+
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
242 |
+
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
243 |
+
# """
|
244 |
+
# )
|
245 |
+
|
246 |
+
# gr.LoginButton()
|
247 |
+
|
248 |
+
# run_button = gr.Button("Run Evaluation & Submit All Answers")
|
249 |
+
|
250 |
+
# status_output = gr.Textbox(
|
251 |
+
# label="Run Status / Submission Result", lines=5, interactive=False
|
252 |
+
# )
|
253 |
+
# # Removed max_rows=10 from DataFrame constructor
|
254 |
+
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
255 |
+
|
256 |
+
# run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
257 |
+
|
258 |
+
# async def main():
|
259 |
+
# agent = BasicAgent()
|
260 |
+
# api_url = DEFAULT_API_URL
|
261 |
+
# questions_url = f"{api_url}/questions"
|
262 |
+
# print(f"Fetching questions from: {questions_url}")
|
263 |
+
|
264 |
+
# response = requests.get(questions_url, timeout=15)
|
265 |
+
# response.raise_for_status()
|
266 |
+
# questions_data = response.json()
|
267 |
+
|
268 |
+
# # 3. Run your Agent
|
269 |
+
# results_log = []
|
270 |
+
# answers_payload = []
|
271 |
+
# print(f"Running agent on {len(questions_data)} questions...")
|
272 |
+
# item = questions_data[0]
|
273 |
+
# task_id = item.get("task_id")
|
274 |
+
# question_text = item.get("question")
|
275 |
+
# file_name = item.get("file_name")
|
276 |
+
# submitted_answer = await agent(question_text, task_id, file_name)
|
277 |
+
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
278 |
+
# results_log.append(
|
279 |
+
# {
|
280 |
+
# "Task ID": task_id,
|
281 |
+
# "Question": question_text,
|
282 |
+
# "Submitted Answer": submitted_answer,
|
283 |
+
# }
|
284 |
+
# )
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
+
# print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
288 |
+
# # Check for SPACE_HOST and SPACE_ID at startup for information
|
289 |
+
# space_host_startup = os.getenv("SPACE_HOST")
|
290 |
+
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
291 |
+
|
292 |
+
# if space_host_startup:
|
293 |
+
# print(f"✅ SPACE_HOST found: {space_host_startup}")
|
294 |
+
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
295 |
+
# else:
|
296 |
+
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
297 |
+
|
298 |
+
# if space_id_startup: # Print repo URLs if SPACE_ID is found
|
299 |
+
# print(f"✅ SPACE_ID found: {space_id_startup}")
|
300 |
+
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
301 |
+
# print(
|
302 |
+
# f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
303 |
+
# )
|
304 |
+
# else:
|
305 |
+
# print(
|
306 |
+
# "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
307 |
+
# )
|
308 |
+
|
309 |
+
# print("-" * (60 + len(" App Starting ")) + "\n")
|
310 |
+
|
311 |
+
# print("Launching Gradio Interface for Basic Agent Evaluation...")
|
312 |
+
# demo.launch(debug=True, share=False)
|
313 |
+
asyncio.run(run_and_submit_all())
|
requirements.txt
CHANGED
@@ -10,4 +10,5 @@ yt-dlp
|
|
10 |
html2text
|
11 |
llama-index-utils-workflow
|
12 |
llama-index-llms-huggingface-api
|
13 |
-
asyncio
|
|
|
|
10 |
html2text
|
11 |
llama-index-utils-workflow
|
12 |
llama-index-llms-huggingface-api
|
13 |
+
asyncio
|
14 |
+
pydub
|
search.py
CHANGED
@@ -6,6 +6,7 @@ import aiohttp
|
|
6 |
class GoogleSearch:
|
7 |
def __init__(self):
|
8 |
load_dotenv()
|
|
|
9 |
self.api_key = os.environ["GOOGLE_API_KEY"]
|
10 |
self.cse_id = os.getenv("GOOGLE_CSE_ID")
|
11 |
|
@@ -17,6 +18,9 @@ class GoogleSearch:
|
|
17 |
Returns:
|
18 |
dict: JSON response from Google API.
|
19 |
"""
|
|
|
|
|
|
|
20 |
|
21 |
if not self.api_key or not self.cse_id:
|
22 |
raise ValueError(
|
@@ -46,6 +50,9 @@ class GoogleSearch:
|
|
46 |
Returns:
|
47 |
dict: JSON response from Google API.
|
48 |
"""
|
|
|
|
|
|
|
49 |
|
50 |
if not self.api_key or not self.cse_id:
|
51 |
raise ValueError(
|
|
|
6 |
class GoogleSearch:
|
7 |
def __init__(self):
|
8 |
load_dotenv()
|
9 |
+
self.counter = 0
|
10 |
self.api_key = os.environ["GOOGLE_API_KEY"]
|
11 |
self.cse_id = os.getenv("GOOGLE_CSE_ID")
|
12 |
|
|
|
18 |
Returns:
|
19 |
dict: JSON response from Google API.
|
20 |
"""
|
21 |
+
if self.counter > 1:
|
22 |
+
return "No more searches, move on"
|
23 |
+
self.counter += 1
|
24 |
|
25 |
if not self.api_key or not self.cse_id:
|
26 |
raise ValueError(
|
|
|
50 |
Returns:
|
51 |
dict: JSON response from Google API.
|
52 |
"""
|
53 |
+
if self.counter > 2:
|
54 |
+
return "No more searches, move on"
|
55 |
+
self.counter += 1
|
56 |
|
57 |
if not self.api_key or not self.cse_id:
|
58 |
raise ValueError(
|
tools.py
CHANGED
@@ -11,14 +11,18 @@ import re
|
|
11 |
import html2text
|
12 |
from requests.exceptions import RequestException
|
13 |
from bs4 import BeautifulSoup
|
|
|
14 |
|
15 |
|
16 |
-
def
|
17 |
-
"""
|
18 |
Args:
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
response = client.chat.completions.create(
|
24 |
model="gpt-4o",
|
@@ -35,7 +39,7 @@ def transcribe_image_from_link(image_link: str) -> str:
|
|
35 |
{
|
36 |
"type": "image_url",
|
37 |
"image_url": {
|
38 |
-
"url":
|
39 |
"detail": "high",
|
40 |
},
|
41 |
},
|
@@ -68,7 +72,7 @@ def transcribe_webpage(website_url: str) -> str:
|
|
68 |
content_div = soup.find("div", id="mw-content-text")
|
69 |
|
70 |
if not content_div:
|
71 |
-
|
72 |
|
73 |
# Only extract <p> and <table> tags
|
74 |
elements = content_div.find_all(["p", "table"])
|
@@ -95,7 +99,7 @@ def transcribe_webpage(website_url: str) -> str:
|
|
95 |
def parse_youtube_video(youtube_url: str) -> str:
|
96 |
"""Returns text transcript of a youtube video
|
97 |
Args:
|
98 |
-
youtube_url:
|
99 |
"""
|
100 |
load_dotenv()
|
101 |
client = OpenAI()
|
@@ -107,7 +111,7 @@ def parse_youtube_video(youtube_url: str) -> str:
|
|
107 |
{
|
108 |
"key": "FFmpegExtractAudio",
|
109 |
"preferredcodec": "mp3",
|
110 |
-
"preferredquality": "
|
111 |
}
|
112 |
],
|
113 |
"outtmpl": "%(title)s.%(ext)s",
|
@@ -119,7 +123,6 @@ def parse_youtube_video(youtube_url: str) -> str:
|
|
119 |
# Download audio
|
120 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
121 |
info = ydl.extract_info(youtube_url, download=True)
|
122 |
-
title = info["title"]
|
123 |
|
124 |
# Find the downloaded audio file
|
125 |
audio_file = None
|
@@ -131,13 +134,27 @@ def parse_youtube_video(youtube_url: str) -> str:
|
|
131 |
if not audio_file:
|
132 |
raise Exception("Audio file not found")
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
return
|
141 |
|
142 |
|
143 |
class APIProcessor:
|
@@ -236,9 +253,9 @@ if __name__ == "__main__":
|
|
236 |
|
237 |
# response = audio_task_processor.get_and_process_attachment()
|
238 |
# print(response)
|
239 |
-
|
240 |
-
|
241 |
-
text = transcribe_webpage(
|
242 |
-
|
243 |
-
)
|
244 |
-
print(text)
|
|
|
11 |
import html2text
|
12 |
from requests.exceptions import RequestException
|
13 |
from bs4 import BeautifulSoup
|
14 |
+
from pydub import AudioSegment
|
15 |
|
16 |
|
17 |
+
def add_numbers(*nums: list[int]) -> int:
|
18 |
+
"""Add a list of numbers
|
19 |
Args:
|
20 |
+
nums: list of numbers"""
|
21 |
+
|
22 |
+
|
23 |
+
def transcribe_image_from_url(image_url: str) -> str:
|
24 |
+
"""Only works with full http urls"""
|
25 |
+
client = OpenAI()
|
26 |
|
27 |
response = client.chat.completions.create(
|
28 |
model="gpt-4o",
|
|
|
39 |
{
|
40 |
"type": "image_url",
|
41 |
"image_url": {
|
42 |
+
"url": image_url,
|
43 |
"detail": "high",
|
44 |
},
|
45 |
},
|
|
|
72 |
content_div = soup.find("div", id="mw-content-text")
|
73 |
|
74 |
if not content_div:
|
75 |
+
content_div = soup.find("div")
|
76 |
|
77 |
# Only extract <p> and <table> tags
|
78 |
elements = content_div.find_all(["p", "table"])
|
|
|
99 |
def parse_youtube_video(youtube_url: str) -> str:
|
100 |
"""Returns text transcript of a youtube video
|
101 |
Args:
|
102 |
+
youtube_url: full url linking to the video to transcribe
|
103 |
"""
|
104 |
load_dotenv()
|
105 |
client = OpenAI()
|
|
|
111 |
{
|
112 |
"key": "FFmpegExtractAudio",
|
113 |
"preferredcodec": "mp3",
|
114 |
+
"preferredquality": "64",
|
115 |
}
|
116 |
],
|
117 |
"outtmpl": "%(title)s.%(ext)s",
|
|
|
123 |
# Download audio
|
124 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
125 |
info = ydl.extract_info(youtube_url, download=True)
|
|
|
126 |
|
127 |
# Find the downloaded audio file
|
128 |
audio_file = None
|
|
|
134 |
if not audio_file:
|
135 |
raise Exception("Audio file not found")
|
136 |
|
137 |
+
audio = AudioSegment.from_mp3(audio_file)
|
138 |
+
chunk_length_ms = 5 * 1000 * 60
|
139 |
+
chunks = []
|
140 |
+
|
141 |
+
for i in range(0, len(audio), chunk_length_ms):
|
142 |
+
chunk = audio[i : i + chunk_length_ms]
|
143 |
+
chunk_path = os.path.join(temp_dir, f"chunk_{i // chunk_length_ms}.mp3")
|
144 |
+
chunk.export(chunk_path, format="mp3")
|
145 |
+
chunks.append(chunk_path)
|
146 |
+
|
147 |
+
# Transcribe each chunk
|
148 |
+
full_transcript = ""
|
149 |
+
for chunk_path in chunks:
|
150 |
+
with open(chunk_path, "rb") as audio_chunk:
|
151 |
+
transcript = client.audio.transcriptions.create(
|
152 |
+
model="whisper-1",
|
153 |
+
file=audio_chunk,
|
154 |
+
)
|
155 |
+
full_transcript += transcript.text + " "
|
156 |
|
157 |
+
return full_transcript.strip()
|
158 |
|
159 |
|
160 |
class APIProcessor:
|
|
|
253 |
|
254 |
# response = audio_task_processor.get_and_process_attachment()
|
255 |
# print(response)
|
256 |
+
result = parse_youtube_video("https://www.youtube.com/watch?v=1htKBjuUWec")
|
257 |
+
print(result)
|
258 |
+
# text = transcribe_webpage(
|
259 |
+
# "https://en.wikipedia.org/wiki/Mercedes_Sosa#Studio_albums"
|
260 |
+
# )
|
261 |
+
# print(text)
|