Spaces:
Running
Running
File size: 24,584 Bytes
bca3a49 f1046e9 bca3a49 f1046e9 bca3a49 f1046e9 bca3a49 f1046e9 bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from typing import List
import numpy as np
import torch
import ml_collections as mlc
from rdkit import Chem
from dockformer.data import data_transforms
from dockformer.data.data_transforms import get_restype_atom37_mask, get_restypes
from dockformer.data.ligand_features import make_ligand_features
from dockformer.data.protein_features import make_protein_features
from dockformer.data.utils import FeatureTensorDict, FeatureDict
from dockformer.utils import protein
def _np_filter_and_to_tensor_dict(np_example: FeatureDict, features_to_keep: List[str]) -> FeatureTensorDict:
"""Creates dict of tensors from a dict of NumPy arrays.
Args:
np_example: A dict of NumPy feature arrays.
features: A list of strings of feature names to be returned in the dataset.
Returns:
A dictionary of features mapping feature names to features. Only the given
features are returned, all other ones are filtered out.
"""
# torch generates warnings if feature is already a torch Tensor
to_tensor = lambda t: torch.tensor(t) if type(t) != torch.Tensor else t.clone().detach()
tensor_dict = {
k: to_tensor(v) for k, v in np_example.items() if k in features_to_keep
}
return tensor_dict
def _add_protein_probablistic_features(features: FeatureDict, cfg: mlc.ConfigDict, mode: str) -> FeatureDict:
if mode == "train":
p = torch.rand(1).item()
use_clamped_fape_value = float(p < cfg.supervised.clamp_prob)
features["use_clamped_fape"] = np.float32(use_clamped_fape_value)
else:
features["use_clamped_fape"] = np.float32(0.0)
return features
@data_transforms.curry1
def compose(x, fs):
for f in fs:
x = f(x)
return x
def _apply_protein_transforms(tensors: FeatureTensorDict) -> FeatureTensorDict:
transforms = [
data_transforms.cast_to_64bit_ints,
data_transforms.squeeze_features,
data_transforms.make_atom14_masks,
data_transforms.make_atom14_positions,
data_transforms.atom37_to_frames,
data_transforms.atom37_to_torsion_angles(""),
data_transforms.make_pseudo_beta(),
data_transforms.get_backbone_frames,
data_transforms.get_chi_angles,
]
tensors = compose(transforms)(tensors)
return tensors
def _apply_protein_probablistic_transforms(tensors: FeatureTensorDict, cfg: mlc.ConfigDict, mode: str) \
-> FeatureTensorDict:
transforms = [data_transforms.make_target_feat()]
crop_feats = dict(cfg.common.feat)
if cfg[mode].fixed_size:
transforms.append(data_transforms.select_feat(list(crop_feats)))
# TODO bshor: restore transforms for training on cropped proteins, need to handle pocket somehow
# if so, look for random_crop_to_size and make_fixed_size in data_transforms.py
compose(transforms)(tensors)
return tensors
def get_psuedo_beta(pdb_path: str) -> torch.Tensor:
"""Get pseudo beta positions for a protein."""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
pdb_feats = make_protein_features(protein_object, "")
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, ["aatype", "all_atom_positions", "all_atom_mask"])
pdb_feats = _apply_protein_transforms(tensor_feats)
return pdb_feats["pseudo_beta"]
class DataPipeline:
"""Assembles input features."""
def __init__(self, config: mlc.ConfigDict, mode: str):
self.config = config
self.mode = mode
self.feature_names = config.common.unsupervised_features
if config[mode].supervised:
self.feature_names += config.supervised.supervised_features
def process_pdb(self, pdb_path: str) -> FeatureTensorDict:
"""
Assembles features for a protein in a PDB file.
"""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
description = os.path.splitext(os.path.basename(pdb_path))[0].upper()
pdb_feats = make_protein_features(protein_object, description)
pdb_feats = _add_protein_probablistic_features(pdb_feats, self.config, self.mode)
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, self.feature_names)
tensor_feats = _apply_protein_transforms(tensor_feats)
tensor_feats = _apply_protein_probablistic_transforms(tensor_feats, self.config, self.mode)
return tensor_feats
def process_smiles(self, smiles: str) -> FeatureTensorDict:
ligand = Chem.MolFromSmiles(smiles)
return make_ligand_features(ligand)
def process_mol2(self, mol2_path: str) -> FeatureTensorDict:
"""
Assembles features for a ligand in a mol2 file.
"""
ligand = Chem.MolFromMol2File(mol2_path)
assert ligand is not None, f"Failed to parse ligand from {mol2_path}"
conf = ligand.GetConformer()
positions = torch.tensor(conf.GetPositions())
return {
**make_ligand_features(ligand),
"gt_ligand_positions": positions.float()
}
def process_sdf(self, sdf_path: str) -> FeatureTensorDict:
"""
Assembles features for a ligand in a mol2 file.
"""
ligand = Chem.MolFromMolFile(sdf_path)
assert ligand is not None, f"Failed to parse ligand from {sdf_path}"
conf = ligand.GetConformer(0)
positions = torch.tensor(conf.GetPositions())
return {
**make_ligand_features(ligand),
"ligand_positions": positions.float()
}
def process_sdf_list(self, sdf_path_list: List[str]) -> FeatureTensorDict:
all_sdf_feats = [self.process_sdf(sdf_path) for sdf_path in sdf_path_list]
all_sizes = [sdf_feats["ligand_target_feat"].shape[0] for sdf_feats in all_sdf_feats]
joined_ligand_feats = {}
for k in all_sdf_feats[0].keys():
if k == "ligand_positions":
joined_positions = all_sdf_feats[0][k]
prev_offset = joined_positions.max(dim=0).values + 100
for i, sdf_feats in enumerate(all_sdf_feats[1:]):
offset = prev_offset - sdf_feats[k].min(dim=0).values
joined_positions = torch.cat([joined_positions, sdf_feats[k] + offset], dim=0)
prev_offset = joined_positions.max(dim=0).values + 100
joined_ligand_feats[k] = joined_positions
elif k in ["ligand_target_feat", "ligand_atype", "ligand_charge", "ligand_chirality", "ligand_bonds"]:
joined_ligand_feats[k] = torch.cat([sdf_feats[k] for sdf_feats in all_sdf_feats], dim=0)
if k == "ligand_target_feat":
joined_ligand_feats["ligand_idx"] = torch.cat([torch.full((sdf_feats[k].shape[0],), i)
for i, sdf_feats in enumerate(all_sdf_feats)], dim=0)
elif k == "ligand_bonds":
joined_ligand_feats["ligand_bonds_idx"] = torch.cat([torch.full((sdf_feats[k].shape[0],), i)
for i, sdf_feats in enumerate(all_sdf_feats)],
dim=0)
elif k == "ligand_bonds_feat":
joined_feature = torch.zeros((sum(all_sizes), sum(all_sizes), all_sdf_feats[0][k].shape[2]))
for i, sdf_feats in enumerate(all_sdf_feats):
start_idx = sum(all_sizes[:i])
end_idx = sum(all_sizes[:i + 1])
joined_feature[start_idx:end_idx, start_idx:end_idx, :] = sdf_feats[k]
joined_ligand_feats[k] = joined_feature
else:
raise ValueError(f"Unknown key in sdf list features {k}")
return joined_ligand_feats
@staticmethod
def _get_gt_positions(ref_ligand_path: str, gt_ligand_path: str):
ref_ligand = Chem.MolFromMolFile(ref_ligand_path)
gt_ligand = Chem.MolFromMolFile(gt_ligand_path)
gt_original_positions = gt_ligand.GetConformer(0).GetPositions()
gt_positions = [gt_original_positions[idx] for idx in gt_ligand.GetSubstructMatch(ref_ligand)]
if len(gt_positions) == 0:
from rdkit.Chem import rdFMCS
mcs_result = rdFMCS.FindMCS([ref_ligand, gt_ligand])
if mcs_result.canceled:
print("MCS search canceled, Error!!!! Can't map ref ligand to gt ligand")
gt_positions = gt_original_positions
else:
mcs_mol = Chem.MolFromSmarts(mcs_result.smartsString)
ref_match = ref_ligand.GetSubstructMatch(mcs_mol)
gt_match = gt_ligand.GetSubstructMatch(mcs_mol)
ref_to_gt_atom = {ref_idx: gt_idx for ref_idx, gt_idx in zip(ref_match, gt_match)}
gt_positions = [gt_original_positions[ref_to_gt_atom[i]] for i in sorted(list(ref_to_gt_atom.keys()))]
return gt_positions
def get_matching_positions_list(self, ref_path_list: List[str], gt_path_list: List[str]):
joined_gt_positions = []
for ref_ligand_path, gt_ligand_path in zip(ref_path_list, gt_path_list):
gt_positions = self.get_matching_positions(ref_ligand_path, gt_ligand_path)
joined_gt_positions.extend(gt_positions)
return torch.tensor(np.array(joined_gt_positions)).float()
def get_matching_positions(self, ref_ligand_path: str, gt_ligand_path: str):
gt_positions = self._get_gt_positions(ref_ligand_path, gt_ligand_path)
return torch.tensor(np.array(gt_positions)) .float()
def _prepare_recycles(feat: torch.Tensor, num_recycles: int) -> torch.Tensor:
return feat.unsqueeze(-1).repeat(*([1] * len(feat.shape)), num_recycles)
def _fit_to_crop(target_tensor: torch.Tensor, crop_size: int, start_ind: int) -> torch.Tensor:
if len(target_tensor.shape) == 1:
ret = torch.zeros((crop_size, ), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0]] = target_tensor
return ret
elif len(target_tensor.shape) == 2:
ret = torch.zeros((crop_size, target_tensor.shape[-1]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], :] = target_tensor
return ret
else:
ret = torch.zeros((crop_size, *target_tensor.shape[1:]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], ...] = target_tensor
return ret
def parse_input_json(input_path: str, mode: str, config: mlc.ConfigDict, data_pipeline: DataPipeline,
data_dir: str, idx: int) -> FeatureTensorDict:
start_load_time = time.time()
input_data = json.load(open(input_path, "r"))
if mode == "train" or mode == "eval":
print("loading", input_data["pdb_id"], end=" ")
num_recycles = config.common.max_recycling_iters + 1
input_pdb_path = os.path.join(data_dir, input_data["input_structure"])
input_protein_feats = data_pipeline.process_pdb(pdb_path=input_pdb_path)
# load ref sdf
if "ref_sdf" in input_data:
ref_sdf_path = os.path.join(data_dir, input_data["ref_sdf"])
ref_ligand_feats = data_pipeline.process_sdf(sdf_path=ref_sdf_path)
ref_ligand_feats["ligand_idx"] = torch.zeros((ref_ligand_feats["ligand_target_feat"].shape[0],))
ref_ligand_feats["ligand_bonds_idx"] = torch.zeros((ref_ligand_feats["ligand_bonds"].shape[0],))
elif "ref_sdf_list" in input_data:
sdf_path_list = [os.path.join(data_dir, i) for i in input_data["ref_sdf_list"]]
ref_ligand_feats = data_pipeline.process_sdf_list(sdf_path_list=sdf_path_list)
else:
raise ValueError("ref_sdf or ref_sdf_list must be in input_data")
n_res = input_protein_feats["protein_target_feat"].shape[0]
n_lig = ref_ligand_feats["ligand_target_feat"].shape[0]
n_affinity = 1
# add 1 for affinity token
crop_size = n_res + n_lig + n_affinity
if (mode == "train" or mode == "eval") and config.train.fixed_size:
crop_size = config.train.crop_size
assert crop_size >= n_res + n_lig + n_affinity, f"crop_size: {crop_size}, n_res: {n_res}, n_lig: {n_lig}"
token_mask = torch.zeros((crop_size,), dtype=torch.float32)
token_mask[:n_res + n_lig + n_affinity] = 1
protein_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_mask[:n_res] = 1
ligand_mask = torch.zeros((crop_size,), dtype=torch.float32)
ligand_mask[n_res:n_res + n_lig] = 1
affinity_mask = torch.zeros((crop_size,), dtype=torch.float32)
affinity_mask[n_res + n_lig] = 1
structural_mask = torch.zeros((crop_size,), dtype=torch.float32)
structural_mask[:n_res + n_lig] = 1
inter_pair_mask = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_pair_mask[:n_res, n_res:n_res + n_lig] = 1
inter_pair_mask[n_res:n_res + n_lig, :n_res] = 1
protein_tf_dim = input_protein_feats["protein_target_feat"].shape[-1]
ligand_tf_dim = ref_ligand_feats["ligand_target_feat"].shape[-1]
joined_tf_dim = protein_tf_dim + ligand_tf_dim
target_feat = torch.zeros((crop_size, joined_tf_dim + 3), dtype=torch.float32)
target_feat[:n_res, :protein_tf_dim] = input_protein_feats["protein_target_feat"]
target_feat[n_res:n_res + n_lig, protein_tf_dim:joined_tf_dim] = ref_ligand_feats["ligand_target_feat"]
target_feat[:n_res, joined_tf_dim] = 1 # Set "is_protein" flag for protein rows
target_feat[n_res:n_res + n_lig, joined_tf_dim + 1] = 1 # Set "is_ligand" flag for ligand rows
target_feat[n_res + n_lig, joined_tf_dim + 2] = 1 # Set "is_affinity" flag for affinity row
ligand_bonds_feat = torch.zeros((crop_size, crop_size, ref_ligand_feats["ligand_bonds_feat"].shape[-1]),
dtype=torch.float32)
ligand_bonds_feat[n_res:n_res + n_lig, n_res:n_res + n_lig] = ref_ligand_feats["ligand_bonds_feat"]
input_positions = torch.zeros((crop_size, 3), dtype=torch.float32)
input_positions[:n_res] = input_protein_feats["pseudo_beta"]
input_positions[n_res:n_res + n_lig] = ref_ligand_feats["ligand_positions"]
protein_distogram_mask = torch.zeros(crop_size)
if mode == "train":
ones_indices = torch.randperm(n_res)[:int(n_res * config.train.protein_distogram_mask_prob)]
# print(ones_indices)
protein_distogram_mask[ones_indices] = 1
input_positions = input_positions * (1 - protein_distogram_mask).unsqueeze(-1)
elif mode == "predict":
# ignore all positions where pseudo_beta is 0, 0, 0
protein_distogram_mask = (input_positions == 0).all(dim=-1).float()
# print("Ignoring residues", torch.nonzero(distogram_mask).flatten())
# Implement ligand as amino acid type 20
ligand_aatype = 20 * torch.ones((n_lig,), dtype=input_protein_feats["aatype"].dtype)
aatype = torch.cat([input_protein_feats["aatype"], ligand_aatype], dim=0)
restype_atom14_to_atom37, restype_atom37_to_atom14, restype_atom14_mask = get_restypes(target_feat.device)
lig_residx_atom37_to_atom14 = restype_atom37_to_atom14[20].repeat(n_lig, 1)
residx_atom37_to_atom14 = torch.cat([input_protein_feats["residx_atom37_to_atom14"], lig_residx_atom37_to_atom14],
dim=0)
restype_atom37_mask = get_restype_atom37_mask(target_feat.device)
lig_atom37_atom_exists = restype_atom37_mask[20].repeat(n_lig, 1)
atom37_atom_exists = torch.cat([input_protein_feats["atom37_atom_exists"], lig_atom37_atom_exists], dim=0)
feats = {
"token_mask": token_mask,
"protein_mask": protein_mask,
"ligand_mask": ligand_mask,
"affinity_mask": affinity_mask,
"structural_mask": structural_mask,
"inter_pair_mask": inter_pair_mask,
"target_feat": target_feat,
"ligand_bonds_feat": ligand_bonds_feat,
"input_positions": input_positions,
"protein_distogram_mask": protein_distogram_mask,
"protein_residue_index": _fit_to_crop(input_protein_feats["residue_index"], crop_size, 0),
"aatype": _fit_to_crop(aatype, crop_size, 0),
"residx_atom37_to_atom14": _fit_to_crop(residx_atom37_to_atom14, crop_size, 0),
"atom37_atom_exists": _fit_to_crop(atom37_atom_exists, crop_size, 0),
}
if mode == "predict":
feats.update({
"in_chain_residue_index": input_protein_feats["in_chain_residue_index"],
"chain_index": input_protein_feats["chain_index"],
"ligand_atype": ref_ligand_feats["ligand_atype"],
"ligand_chirality": ref_ligand_feats["ligand_chirality"],
"ligand_charge": ref_ligand_feats["ligand_charge"],
"ligand_bonds": ref_ligand_feats["ligand_bonds"],
"ligand_idx": ref_ligand_feats["ligand_idx"],
"ligand_bonds_idx": ref_ligand_feats["ligand_bonds_idx"],
})
if mode == 'train' or mode == 'eval':
gt_pdb_path = os.path.join(data_dir, input_data["gt_structure"])
gt_protein_feats = data_pipeline.process_pdb(pdb_path=gt_pdb_path)
if "gt_sdf" in input_data:
gt_ligand_positions = data_pipeline.get_matching_positions(
os.path.join(data_dir, input_data["ref_sdf"]),
os.path.join(data_dir, input_data["gt_sdf"]),
)
elif "gt_sdf_list" in input_data:
gt_ligand_positions = data_pipeline.get_matching_positions_list(
[os.path.join(data_dir, i) for i in input_data["ref_sdf_list"]],
[os.path.join(data_dir, i) for i in input_data["gt_sdf_list"]],
)
else:
raise ValueError("gt_sdf or gt_sdf_list must be in input_data")
affinity_loss_factor = torch.tensor([1.0], dtype=torch.float32)
if input_data["affinity"] is None:
eps = 1e-6
affinity_loss_factor = torch.tensor([eps], dtype=torch.float32)
affinity = torch.tensor([0.0], dtype=torch.float32)
else:
affinity = torch.tensor([input_data["affinity"]], dtype=torch.float32)
resolution = torch.tensor(input_data["resolution"], dtype=torch.float32)
# prepare inter_contacts
expanded_prot_pos = gt_protein_feats["pseudo_beta"].unsqueeze(1) # Shape: (N_prot, 1, 3)
expanded_lig_pos = gt_ligand_positions.unsqueeze(0) # Shape: (1, N_lig, 3)
distances = torch.sqrt(torch.sum((expanded_prot_pos - expanded_lig_pos) ** 2, dim=-1))
inter_contact = (distances < 5.0).float()
binding_site_mask = inter_contact.any(dim=1).float()
inter_contact_reshaped_to_crop = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_contact_reshaped_to_crop[:n_res, n_res:n_res + n_lig] = inter_contact
inter_contact_reshaped_to_crop[n_res:n_res + n_lig, :n_res] = inter_contact.T
# Use CA positions only
lig_single_res_atom37_mask = torch.zeros((37,), dtype=torch.float32)
lig_single_res_atom37_mask[1] = 1
lig_atom37_mask = lig_single_res_atom37_mask.unsqueeze(0).expand(n_lig, -1)
lig_single_res_atom14_mask = torch.zeros((14,), dtype=torch.float32)
lig_single_res_atom14_mask[1] = 1
lig_atom14_mask = lig_single_res_atom14_mask.unsqueeze(0).expand(n_lig, -1)
lig_atom37_positions = gt_ligand_positions.unsqueeze(1).expand(-1, 37, -1)
lig_atom37_positions = lig_atom37_positions * lig_single_res_atom37_mask.view(1, 37, 1).expand(n_lig, -1, 3)
lig_atom14_positions = gt_ligand_positions.unsqueeze(1).expand(-1, 14, -1)
lig_atom14_positions = lig_atom14_positions * lig_single_res_atom14_mask.view(1, 14, 1).expand(n_lig, -1, 3)
atom37_gt_positions = torch.cat([gt_protein_feats["all_atom_positions"], lig_atom37_positions], dim=0)
atom37_atom_exists_in_res = torch.cat([gt_protein_feats["atom37_atom_exists"], lig_atom37_mask], dim=0)
atom37_atom_exists_in_gt = torch.cat([gt_protein_feats["all_atom_mask"], lig_atom37_mask], dim=0)
atom14_gt_positions = torch.cat([gt_protein_feats["atom14_gt_positions"], lig_atom14_positions], dim=0)
atom14_atom_exists_in_res = torch.cat([gt_protein_feats["atom14_atom_exists"], lig_atom14_mask], dim=0)
atom14_atom_exists_in_gt = torch.cat([gt_protein_feats["atom14_gt_exists"], lig_atom14_mask], dim=0)
gt_pseudo_beta_with_lig = torch.cat([gt_protein_feats["pseudo_beta"], gt_ligand_positions], dim=0)
gt_pseudo_beta_with_lig_mask = torch.cat(
[gt_protein_feats["pseudo_beta_mask"],
torch.ones((n_lig,), dtype=gt_protein_feats["pseudo_beta_mask"].dtype)],
dim=0)
# IGNORES: residx_atom14_to_atom37, rigidgroups_group_exists,
# rigidgroups_group_is_ambiguous, pseudo_beta_mask, backbone_rigid_mask, protein_target_feat
gt_protein_feats = {
"atom37_gt_positions": atom37_gt_positions, # torch.Size([n_struct, 37, 3])
"atom37_atom_exists_in_res": atom37_atom_exists_in_res, # torch.Size([n_struct, 37])
"atom37_atom_exists_in_gt": atom37_atom_exists_in_gt, # torch.Size([n_struct, 37])
"atom14_gt_positions": atom14_gt_positions, # torch.Size([n_struct, 14, 3])
"atom14_atom_exists_in_res": atom14_atom_exists_in_res, # torch.Size([n_struct, 14])
"atom14_atom_exists_in_gt": atom14_atom_exists_in_gt, # torch.Size([n_struct, 14])
"gt_pseudo_beta_with_lig": gt_pseudo_beta_with_lig, # torch.Size([n_struct, 3])
"gt_pseudo_beta_with_lig_mask": gt_pseudo_beta_with_lig_mask, # torch.Size([n_struct])
# These we don't need to add the ligand to, because padding is sufficient (everything should be 0)
"atom14_alt_gt_positions": gt_protein_feats["atom14_alt_gt_positions"], # torch.Size([n_res, 14, 3])
"atom14_alt_gt_exists": gt_protein_feats["atom14_alt_gt_exists"], # torch.Size([n_res, 14])
"atom14_atom_is_ambiguous": gt_protein_feats["atom14_atom_is_ambiguous"], # torch.Size([n_res, 14])
"rigidgroups_gt_frames": gt_protein_feats["rigidgroups_gt_frames"], # torch.Size([n_res, 8, 4, 4])
"rigidgroups_gt_exists": gt_protein_feats["rigidgroups_gt_exists"], # torch.Size([n_res, 8])
"rigidgroups_alt_gt_frames": gt_protein_feats["rigidgroups_alt_gt_frames"], # torch.Size([n_res, 8, 4, 4])
"backbone_rigid_tensor": gt_protein_feats["backbone_rigid_tensor"], # torch.Size([n_res, 4, 4])
"backbone_rigid_mask": gt_protein_feats["backbone_rigid_mask"], # torch.Size([n_res])
"chi_angles_sin_cos": gt_protein_feats["chi_angles_sin_cos"],
"chi_mask": gt_protein_feats["chi_mask"],
}
for k, v in gt_protein_feats.items():
gt_protein_feats[k] = _fit_to_crop(v, crop_size, 0)
feats = {
**feats,
**gt_protein_feats,
"gt_ligand_positions": _fit_to_crop(gt_ligand_positions, crop_size, n_res),
"resolution": resolution,
"affinity": affinity,
"affinity_loss_factor": affinity_loss_factor,
"seq_length": torch.tensor(n_res + n_lig),
"binding_site_mask": _fit_to_crop(binding_site_mask, crop_size, 0),
"gt_inter_contacts": inter_contact_reshaped_to_crop,
}
for k, v in feats.items():
# print(k, v.shape)
feats[k] = _prepare_recycles(v, num_recycles)
feats["batch_idx"] = torch.tensor(
[idx for _ in range(crop_size)], dtype=torch.int64, device=feats["aatype"].device
)
print("load time", round(time.time() - start_load_time, 4))
return feats
|