File size: 17,765 Bytes
0fdcb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import math
from typing import Optional, Callable, List, Tuple
import numpy as np

import torch
import torch.nn as nn
import torch.utils.checkpoint
from scipy.stats import truncnorm

from dockformerpp.utils.kernel.attention_core import attention_core
from dockformerpp.utils.precision_utils import is_fp16_enabled
from dockformerpp.utils.tensor_utils import (
    permute_final_dims,
    flatten_final_dims,
)


# Suited for 40gb GPU
# DEFAULT_LMA_Q_CHUNK_SIZE = 1024
# DEFAULT_LMA_KV_CHUNK_SIZE = 4096
# Suited for 10gb GPU
DEFAULT_LMA_Q_CHUNK_SIZE = 64
DEFAULT_LMA_KV_CHUNK_SIZE = 256


def _prod(nums):
    out = 1
    for n in nums:
        out = out * n
    return out


def _calculate_fan(linear_weight_shape, fan="fan_in"):
    fan_out, fan_in = linear_weight_shape

    if fan == "fan_in":
        f = fan_in
    elif fan == "fan_out":
        f = fan_out
    elif fan == "fan_avg":
        f = (fan_in + fan_out) / 2
    else:
        raise ValueError("Invalid fan option")

    return f


def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
    shape = weights.shape
    f = _calculate_fan(shape, fan)
    scale = scale / max(1, f)
    a = -2
    b = 2
    std = math.sqrt(scale) / truncnorm.std(a=a, b=b, loc=0, scale=1)
    size = _prod(shape)
    samples = truncnorm.rvs(a=a, b=b, loc=0, scale=std, size=size)
    samples = np.reshape(samples, shape)
    with torch.no_grad():
        weights.copy_(torch.tensor(samples, device=weights.device))


def lecun_normal_init_(weights):
    trunc_normal_init_(weights, scale=1.0)


def he_normal_init_(weights):
    trunc_normal_init_(weights, scale=2.0)


def glorot_uniform_init_(weights):
    nn.init.xavier_uniform_(weights, gain=1)


def final_init_(weights):
    with torch.no_grad():
        weights.fill_(0.0)


def gating_init_(weights):
    with torch.no_grad():
        weights.fill_(0.0)


def normal_init_(weights):
    torch.nn.init.kaiming_normal_(weights, nonlinearity="linear")


def ipa_point_weights_init_(weights):
    with torch.no_grad():
        softplus_inverse_1 = 0.541324854612918
        weights.fill_(softplus_inverse_1)


class Linear(nn.Linear):
    """
    A Linear layer with built-in nonstandard initializations. Called just
    like torch.nn.Linear.

    Implements the initializers in 1.11.4, plus some additional ones found
    in the code.
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        bias: bool = True,
        init: str = "default",
        init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
        precision=None
    ):
        """
        Args:
            in_dim:
                The final dimension of inputs to the layer
            out_dim:
                The final dimension of layer outputs
            bias:
                Whether to learn an additive bias. True by default
            init:
                The initializer to use. Choose from:

                "default": LeCun fan-in truncated normal initialization
                "relu": He initialization w/ truncated normal distribution
                "glorot": Fan-average Glorot uniform initialization
                "gating": Weights=0, Bias=1
                "normal": Normal initialization with std=1/sqrt(fan_in)
                "final": Weights=0, Bias=0

                Overridden by init_fn if the latter is not None.
            init_fn:
                A custom initializer taking weight and bias as inputs.
                Overrides init if not None.
        """
        super(Linear, self).__init__(in_dim, out_dim, bias=bias)

        if bias:
            with torch.no_grad():
                self.bias.fill_(0)

        with torch.no_grad():
            if init_fn is not None:
                init_fn(self.weight, self.bias)
            else:
                if init == "default":
                    lecun_normal_init_(self.weight)
                elif init == "relu":
                    he_normal_init_(self.weight)
                elif init == "glorot":
                    glorot_uniform_init_(self.weight)
                elif init == "gating":
                    gating_init_(self.weight)
                    if bias:
                        self.bias.fill_(1.0)
                elif init == "normal":
                    normal_init_(self.weight)
                elif init == "final":
                    final_init_(self.weight)
                else:
                    raise ValueError("Invalid init string.")

        self.precision = precision

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        d = input.dtype
        if self.precision is not None:
            with torch.cuda.amp.autocast(enabled=False):
                bias = self.bias.to(dtype=self.precision) if self.bias is not None else None
                return nn.functional.linear(input.to(dtype=self.precision),
                                            self.weight.to(dtype=self.precision),
                                            bias).to(dtype=d)

        if d is torch.bfloat16:
            with torch.cuda.amp.autocast(enabled=False):
                bias = self.bias.to(dtype=d) if self.bias is not None else None
                return nn.functional.linear(input, self.weight.to(dtype=d), bias)

        return nn.functional.linear(input, self.weight, self.bias)


class LayerNorm(nn.Module):
    def __init__(self, c_in, eps=1e-5):
        super(LayerNorm, self).__init__()
        
        self.c_in = (c_in,)
        self.eps = eps

        self.weight = nn.Parameter(torch.ones(c_in))
        self.bias = nn.Parameter(torch.zeros(c_in))

    def forward(self, x): 
        d = x.dtype
        if d is torch.bfloat16:
            with torch.cuda.amp.autocast(enabled=False):
                out = nn.functional.layer_norm(
                    x, 
                    self.c_in, 
                    self.weight.to(dtype=d), 
                    self.bias.to(dtype=d), 
                    self.eps
                )
        else:
            out = nn.functional.layer_norm(
                x,
                self.c_in,
                self.weight,
                self.bias,
                self.eps,
            )

        return out


@torch.jit.ignore
def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
    """
        Softmax, but without automatic casting to fp32 when the input is of
        type bfloat16
    """
    d = t.dtype
    if d is torch.bfloat16:
        with torch.cuda.amp.autocast(enabled=False):
            s = torch.nn.functional.softmax(t, dim=dim)
    else:
        s = torch.nn.functional.softmax(t, dim=dim)

    return s


#@torch.jit.script
def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, biases: List[torch.Tensor]) -> torch.Tensor:
    # [*, H, C_hidden, K]
    key = permute_final_dims(key, (1, 0))

    # [*, H, Q, K]
    a = torch.matmul(query, key)

    for b in biases:
        a += b

    a = softmax_no_cast(a, -1)

    # [*, H, Q, C_hidden]
    a = torch.matmul(a, value)

    return a


class Attention(nn.Module):
    """
    Standard multi-head attention using AlphaFold's default layer
    initialization. Allows multiple bias vectors.
    """
    def __init__(
        self,
        c_q: int,
        c_k: int,
        c_v: int,
        c_hidden: int,
        no_heads: int,
        gating: bool = True,
    ):
        """
        Args:
            c_q:
                Input dimension of query data
            c_k:
                Input dimension of key data
            c_v:
                Input dimension of value data
            c_hidden:
                Per-head hidden dimension
            no_heads:
                Number of attention heads
            gating:
                Whether the output should be gated using query data
        """
        super(Attention, self).__init__()

        self.c_q = c_q
        self.c_k = c_k
        self.c_v = c_v
        self.c_hidden = c_hidden
        self.no_heads = no_heads
        self.gating = gating

        # DISCREPANCY: c_hidden is not the per-head channel dimension, as
        # stated in the supplement, but the overall channel dimension.

        self.linear_q = Linear(
            self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot"
        )
        self.linear_k = Linear(
            self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot"
        )
        self.linear_v = Linear(
            self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot"
        )
        self.linear_o = Linear(
            self.c_hidden * self.no_heads, self.c_q, init="final"
        )

        self.linear_g = None
        if self.gating:
            self.linear_g = Linear(
                self.c_q, self.c_hidden * self.no_heads, init="gating"
            )

        self.sigmoid = nn.Sigmoid()

    def _prep_qkv(self,
        q_x: torch.Tensor, 
        kv_x: torch.Tensor,
        apply_scale: bool = True
    ) -> Tuple[
        torch.Tensor, torch.Tensor, torch.Tensor
    ]:
        # [*, Q/K/V, H * C_hidden]
        q = self.linear_q(q_x)
        k = self.linear_k(kv_x)
        v = self.linear_v(kv_x)

        # [*, Q/K, H, C_hidden]
        q = q.view(q.shape[:-1] + (self.no_heads, -1))
        k = k.view(k.shape[:-1] + (self.no_heads, -1))
        v = v.view(v.shape[:-1] + (self.no_heads, -1))

        # [*, H, Q/K, C_hidden]
        q = q.transpose(-2, -3)
        k = k.transpose(-2, -3)
        v = v.transpose(-2, -3)

        if apply_scale:
            q /= math.sqrt(self.c_hidden)

        return q, k, v

    def _wrap_up(self,
        o: torch.Tensor, 
        q_x: torch.Tensor
    ) -> torch.Tensor:
        if self.linear_g is not None:
            g = self.sigmoid(self.linear_g(q_x))
        
            # [*, Q, H, C_hidden]
            g = g.view(g.shape[:-1] + (self.no_heads, -1))
            o = o * g

        # [*, Q, H * C_hidden]
        o = flatten_final_dims(o, 2)

        # [*, Q, C_q]
        o = self.linear_o(o)

        return o

    def forward(
        self,
        q_x: torch.Tensor,
        kv_x: torch.Tensor,
        biases: Optional[List[torch.Tensor]] = None,
        use_memory_efficient_kernel: bool = False,
        use_lma: bool = False,
        lma_q_chunk_size: int = DEFAULT_LMA_Q_CHUNK_SIZE,
        lma_kv_chunk_size: int = DEFAULT_LMA_KV_CHUNK_SIZE,
    ) -> torch.Tensor:
        """
        Args:
            q_x:
                [*, Q, C_q] query data
            kv_x:
                [*, K, C_k] key data
            biases:
                List of biases that broadcast to [*, H, Q, K]
            use_memory_efficient_kernel:
                Whether to use a custom memory-efficient attention kernel.
                This should be the default choice for most. If none of the
                "use_<...>" flags are True, a stock PyTorch implementation
                is used instead
            use_lma:
                Whether to use low-memory attention (Staats & Rabe 2021). If
                none of the "use_<...>" flags are True, a stock PyTorch 
                implementation is used instead
            lma_q_chunk_size:
                Query chunk size (for LMA)
            lma_kv_chunk_size:
                Key/Value chunk size (for LMA)
        Returns
            [*, Q, C_q] attention update
        """
        if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
            raise ValueError(
                "If use_lma is specified, lma_q_chunk_size and "
                "lma_kv_chunk_size must be provided"
            )

        attn_options = [use_memory_efficient_kernel, use_lma]
        if sum(attn_options) > 1:
            raise ValueError(
                "Choose at most one alternative attention algorithm"
            )

        if biases is None:
            biases = []
        
        q, k, v = self._prep_qkv(q_x, kv_x, apply_scale=True)

        if is_fp16_enabled():
            use_memory_efficient_kernel = False
        
        if use_memory_efficient_kernel:
            if len(biases) > 2:
                raise ValueError(
                    "If use_memory_efficient_kernel is True, you may only "
                    "provide up to two bias terms"
                )
            o = attention_core(q, k, v, *((biases + [None] * 2)[:2]))
            o = o.transpose(-2, -3)
        elif use_lma:
            biases = [
                b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],)) 
                for b in biases
            ]
            o = _lma(q, k, v, biases, lma_q_chunk_size, lma_kv_chunk_size)
            o = o.transpose(-2, -3)
        else:
            o = _attention(q, k, v, biases)
            o = o.transpose(-2, -3)

        o = self._wrap_up(o, q_x)

        return o


class GlobalAttention(nn.Module):
    def __init__(self, c_in, c_hidden, no_heads, inf, eps):
        super(GlobalAttention, self).__init__()

        self.c_in = c_in
        self.c_hidden = c_hidden
        self.no_heads = no_heads
        self.inf = inf
        self.eps = eps

        self.linear_q = Linear(
            c_in, c_hidden * no_heads, bias=False, init="glorot"
        )

        self.linear_k = Linear(
            c_in, c_hidden, bias=False, init="glorot",
        )
        self.linear_v = Linear(
            c_in, c_hidden, bias=False, init="glorot",
        )
        self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating")
        self.linear_o = Linear(c_hidden * no_heads, c_in, init="final")

        self.sigmoid = nn.Sigmoid()

    def forward(self, 
        m: torch.Tensor, 
        mask: torch.Tensor,
        use_lma: bool = False,
    ) -> torch.Tensor:
        # [*, N_res, C_in]
        q = torch.sum(m * mask.unsqueeze(-1), dim=-2) / (
            torch.sum(mask, dim=-1)[..., None] + self.eps
        )

        # [*, N_res, H * C_hidden]
        q = self.linear_q(q)
        q *= (self.c_hidden ** (-0.5))

        # [*, N_res, H, C_hidden]
        q = q.view(q.shape[:-1] + (self.no_heads, -1))

        # [*, N_res, C_hidden]
        k = self.linear_k(m)
        v = self.linear_v(m)

        bias = (self.inf * (mask - 1))[..., :, None, :]
        if not use_lma:
            # [*, N_res, H, N_seq]
            a = torch.matmul(
                q,
                k.transpose(-1, -2),  # [*, N_res, C_hidden, N_seq]
            )
            a += bias
            a = softmax_no_cast(a)

            # [*, N_res, H, C_hidden]
            o = torch.matmul(
                a,
                v,
            )
        else:
            o = _lma(
                q, 
                k, 
                v, 
                [bias], 
                DEFAULT_LMA_Q_CHUNK_SIZE, 
                DEFAULT_LMA_KV_CHUNK_SIZE
            )

        # [*, N_res, C_hidden]
        g = self.sigmoid(self.linear_g(m))

        # [*, N_res, H, C_hidden]
        g = g.view(g.shape[:-1] + (self.no_heads, -1))

        # [*, N_res, H, C_hidden]
        o = o.unsqueeze(-3) * g

        # [*, N_res, H * C_hidden]
        o = o.reshape(o.shape[:-2] + (-1,))

        # [*, N_res, C_in]
        m = self.linear_o(o)

        return m


def _lma(
    q: torch.Tensor, 
    k: torch.Tensor, 
    v: torch.Tensor, 
    biases: List[torch.Tensor], 
    q_chunk_size: int, 
    kv_chunk_size: int,
):
    no_q, no_kv = q.shape[-2], k.shape[-2]

    # [*, H, Q, C_hidden]
    o = q.new_zeros(q.shape)
    for q_s in range(0, no_q, q_chunk_size):
        q_chunk = q[..., q_s: q_s + q_chunk_size, :]
        large_bias_chunks = [
            b[..., q_s: q_s + q_chunk_size, :] for b in biases
        ]

        maxes = []
        weights = []
        values = []
        for kv_s in range(0, no_kv, kv_chunk_size):
            k_chunk = k[..., kv_s: kv_s + kv_chunk_size, :]
            v_chunk = v[..., kv_s: kv_s + kv_chunk_size, :]
            small_bias_chunks = [
                b[..., kv_s: kv_s + kv_chunk_size] for b in large_bias_chunks
            ]

            a = torch.einsum(
                "...hqd,...hkd->...hqk", q_chunk, k_chunk,
            )
       
            for b in small_bias_chunks:
                a += b
        
            max_a = torch.max(a, dim=-1, keepdim=True)[0]
            exp_a = torch.exp(a - max_a)
            exp_v = torch.einsum("...hvf,...hqv->...hqf", v_chunk, exp_a)
 
            maxes.append(max_a.detach().squeeze(-1))
            weights.append(torch.sum(exp_a, dim=-1))
            values.append(exp_v)

        chunk_max = torch.stack(maxes, dim=-3)
        chunk_weights = torch.stack(weights, dim=-3)
        chunk_values = torch.stack(values, dim=-4)

        global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0]
        max_diffs = torch.exp(chunk_max - global_max)
        chunk_values = chunk_values * max_diffs.unsqueeze(-1)
        chunk_weights = chunk_weights * max_diffs

        all_values = torch.sum(chunk_values, dim=-4)
        all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4)

        q_chunk_out = all_values / all_weights

        o[..., q_s: q_s + q_chunk_size, :] = q_chunk_out

    return o