Spaces:
Sleeping
Sleeping
File size: 17,765 Bytes
0fdcb79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import math
from typing import Optional, Callable, List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint
from scipy.stats import truncnorm
from dockformerpp.utils.kernel.attention_core import attention_core
from dockformerpp.utils.precision_utils import is_fp16_enabled
from dockformerpp.utils.tensor_utils import (
permute_final_dims,
flatten_final_dims,
)
# Suited for 40gb GPU
# DEFAULT_LMA_Q_CHUNK_SIZE = 1024
# DEFAULT_LMA_KV_CHUNK_SIZE = 4096
# Suited for 10gb GPU
DEFAULT_LMA_Q_CHUNK_SIZE = 64
DEFAULT_LMA_KV_CHUNK_SIZE = 256
def _prod(nums):
out = 1
for n in nums:
out = out * n
return out
def _calculate_fan(linear_weight_shape, fan="fan_in"):
fan_out, fan_in = linear_weight_shape
if fan == "fan_in":
f = fan_in
elif fan == "fan_out":
f = fan_out
elif fan == "fan_avg":
f = (fan_in + fan_out) / 2
else:
raise ValueError("Invalid fan option")
return f
def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
shape = weights.shape
f = _calculate_fan(shape, fan)
scale = scale / max(1, f)
a = -2
b = 2
std = math.sqrt(scale) / truncnorm.std(a=a, b=b, loc=0, scale=1)
size = _prod(shape)
samples = truncnorm.rvs(a=a, b=b, loc=0, scale=std, size=size)
samples = np.reshape(samples, shape)
with torch.no_grad():
weights.copy_(torch.tensor(samples, device=weights.device))
def lecun_normal_init_(weights):
trunc_normal_init_(weights, scale=1.0)
def he_normal_init_(weights):
trunc_normal_init_(weights, scale=2.0)
def glorot_uniform_init_(weights):
nn.init.xavier_uniform_(weights, gain=1)
def final_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def gating_init_(weights):
with torch.no_grad():
weights.fill_(0.0)
def normal_init_(weights):
torch.nn.init.kaiming_normal_(weights, nonlinearity="linear")
def ipa_point_weights_init_(weights):
with torch.no_grad():
softplus_inverse_1 = 0.541324854612918
weights.fill_(softplus_inverse_1)
class Linear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just
like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found
in the code.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
bias: bool = True,
init: str = "default",
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
precision=None
):
"""
Args:
in_dim:
The final dimension of inputs to the layer
out_dim:
The final dimension of layer outputs
bias:
Whether to learn an additive bias. True by default
init:
The initializer to use. Choose from:
"default": LeCun fan-in truncated normal initialization
"relu": He initialization w/ truncated normal distribution
"glorot": Fan-average Glorot uniform initialization
"gating": Weights=0, Bias=1
"normal": Normal initialization with std=1/sqrt(fan_in)
"final": Weights=0, Bias=0
Overridden by init_fn if the latter is not None.
init_fn:
A custom initializer taking weight and bias as inputs.
Overrides init if not None.
"""
super(Linear, self).__init__(in_dim, out_dim, bias=bias)
if bias:
with torch.no_grad():
self.bias.fill_(0)
with torch.no_grad():
if init_fn is not None:
init_fn(self.weight, self.bias)
else:
if init == "default":
lecun_normal_init_(self.weight)
elif init == "relu":
he_normal_init_(self.weight)
elif init == "glorot":
glorot_uniform_init_(self.weight)
elif init == "gating":
gating_init_(self.weight)
if bias:
self.bias.fill_(1.0)
elif init == "normal":
normal_init_(self.weight)
elif init == "final":
final_init_(self.weight)
else:
raise ValueError("Invalid init string.")
self.precision = precision
def forward(self, input: torch.Tensor) -> torch.Tensor:
d = input.dtype
if self.precision is not None:
with torch.cuda.amp.autocast(enabled=False):
bias = self.bias.to(dtype=self.precision) if self.bias is not None else None
return nn.functional.linear(input.to(dtype=self.precision),
self.weight.to(dtype=self.precision),
bias).to(dtype=d)
if d is torch.bfloat16:
with torch.cuda.amp.autocast(enabled=False):
bias = self.bias.to(dtype=d) if self.bias is not None else None
return nn.functional.linear(input, self.weight.to(dtype=d), bias)
return nn.functional.linear(input, self.weight, self.bias)
class LayerNorm(nn.Module):
def __init__(self, c_in, eps=1e-5):
super(LayerNorm, self).__init__()
self.c_in = (c_in,)
self.eps = eps
self.weight = nn.Parameter(torch.ones(c_in))
self.bias = nn.Parameter(torch.zeros(c_in))
def forward(self, x):
d = x.dtype
if d is torch.bfloat16:
with torch.cuda.amp.autocast(enabled=False):
out = nn.functional.layer_norm(
x,
self.c_in,
self.weight.to(dtype=d),
self.bias.to(dtype=d),
self.eps
)
else:
out = nn.functional.layer_norm(
x,
self.c_in,
self.weight,
self.bias,
self.eps,
)
return out
@torch.jit.ignore
def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
"""
Softmax, but without automatic casting to fp32 when the input is of
type bfloat16
"""
d = t.dtype
if d is torch.bfloat16:
with torch.cuda.amp.autocast(enabled=False):
s = torch.nn.functional.softmax(t, dim=dim)
else:
s = torch.nn.functional.softmax(t, dim=dim)
return s
#@torch.jit.script
def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, biases: List[torch.Tensor]) -> torch.Tensor:
# [*, H, C_hidden, K]
key = permute_final_dims(key, (1, 0))
# [*, H, Q, K]
a = torch.matmul(query, key)
for b in biases:
a += b
a = softmax_no_cast(a, -1)
# [*, H, Q, C_hidden]
a = torch.matmul(a, value)
return a
class Attention(nn.Module):
"""
Standard multi-head attention using AlphaFold's default layer
initialization. Allows multiple bias vectors.
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
"""
Args:
c_q:
Input dimension of query data
c_k:
Input dimension of key data
c_v:
Input dimension of value data
c_hidden:
Per-head hidden dimension
no_heads:
Number of attention heads
gating:
Whether the output should be gated using query data
"""
super(Attention, self).__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.no_heads = no_heads
self.gating = gating
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
self.linear_q = Linear(
self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot"
)
self.linear_k = Linear(
self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot"
)
self.linear_v = Linear(
self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot"
)
self.linear_o = Linear(
self.c_hidden * self.no_heads, self.c_q, init="final"
)
self.linear_g = None
if self.gating:
self.linear_g = Linear(
self.c_q, self.c_hidden * self.no_heads, init="gating"
)
self.sigmoid = nn.Sigmoid()
def _prep_qkv(self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
apply_scale: bool = True
) -> Tuple[
torch.Tensor, torch.Tensor, torch.Tensor
]:
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
k = k.view(k.shape[:-1] + (self.no_heads, -1))
v = v.view(v.shape[:-1] + (self.no_heads, -1))
# [*, H, Q/K, C_hidden]
q = q.transpose(-2, -3)
k = k.transpose(-2, -3)
v = v.transpose(-2, -3)
if apply_scale:
q /= math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self,
o: torch.Tensor,
q_x: torch.Tensor
) -> torch.Tensor:
if self.linear_g is not None:
g = self.sigmoid(self.linear_g(q_x))
# [*, Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
biases: Optional[List[torch.Tensor]] = None,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
lma_q_chunk_size: int = DEFAULT_LMA_Q_CHUNK_SIZE,
lma_kv_chunk_size: int = DEFAULT_LMA_KV_CHUNK_SIZE,
) -> torch.Tensor:
"""
Args:
q_x:
[*, Q, C_q] query data
kv_x:
[*, K, C_k] key data
biases:
List of biases that broadcast to [*, H, Q, K]
use_memory_efficient_kernel:
Whether to use a custom memory-efficient attention kernel.
This should be the default choice for most. If none of the
"use_<...>" flags are True, a stock PyTorch implementation
is used instead
use_lma:
Whether to use low-memory attention (Staats & Rabe 2021). If
none of the "use_<...>" flags are True, a stock PyTorch
implementation is used instead
lma_q_chunk_size:
Query chunk size (for LMA)
lma_kv_chunk_size:
Key/Value chunk size (for LMA)
Returns
[*, Q, C_q] attention update
"""
if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
raise ValueError(
"If use_lma is specified, lma_q_chunk_size and "
"lma_kv_chunk_size must be provided"
)
attn_options = [use_memory_efficient_kernel, use_lma]
if sum(attn_options) > 1:
raise ValueError(
"Choose at most one alternative attention algorithm"
)
if biases is None:
biases = []
q, k, v = self._prep_qkv(q_x, kv_x, apply_scale=True)
if is_fp16_enabled():
use_memory_efficient_kernel = False
if use_memory_efficient_kernel:
if len(biases) > 2:
raise ValueError(
"If use_memory_efficient_kernel is True, you may only "
"provide up to two bias terms"
)
o = attention_core(q, k, v, *((biases + [None] * 2)[:2]))
o = o.transpose(-2, -3)
elif use_lma:
biases = [
b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],))
for b in biases
]
o = _lma(q, k, v, biases, lma_q_chunk_size, lma_kv_chunk_size)
o = o.transpose(-2, -3)
else:
o = _attention(q, k, v, biases)
o = o.transpose(-2, -3)
o = self._wrap_up(o, q_x)
return o
class GlobalAttention(nn.Module):
def __init__(self, c_in, c_hidden, no_heads, inf, eps):
super(GlobalAttention, self).__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.inf = inf
self.eps = eps
self.linear_q = Linear(
c_in, c_hidden * no_heads, bias=False, init="glorot"
)
self.linear_k = Linear(
c_in, c_hidden, bias=False, init="glorot",
)
self.linear_v = Linear(
c_in, c_hidden, bias=False, init="glorot",
)
self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating")
self.linear_o = Linear(c_hidden * no_heads, c_in, init="final")
self.sigmoid = nn.Sigmoid()
def forward(self,
m: torch.Tensor,
mask: torch.Tensor,
use_lma: bool = False,
) -> torch.Tensor:
# [*, N_res, C_in]
q = torch.sum(m * mask.unsqueeze(-1), dim=-2) / (
torch.sum(mask, dim=-1)[..., None] + self.eps
)
# [*, N_res, H * C_hidden]
q = self.linear_q(q)
q *= (self.c_hidden ** (-0.5))
# [*, N_res, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
# [*, N_res, C_hidden]
k = self.linear_k(m)
v = self.linear_v(m)
bias = (self.inf * (mask - 1))[..., :, None, :]
if not use_lma:
# [*, N_res, H, N_seq]
a = torch.matmul(
q,
k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq]
)
a += bias
a = softmax_no_cast(a)
# [*, N_res, H, C_hidden]
o = torch.matmul(
a,
v,
)
else:
o = _lma(
q,
k,
v,
[bias],
DEFAULT_LMA_Q_CHUNK_SIZE,
DEFAULT_LMA_KV_CHUNK_SIZE
)
# [*, N_res, C_hidden]
g = self.sigmoid(self.linear_g(m))
# [*, N_res, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
# [*, N_res, H, C_hidden]
o = o.unsqueeze(-3) * g
# [*, N_res, H * C_hidden]
o = o.reshape(o.shape[:-2] + (-1,))
# [*, N_res, C_in]
m = self.linear_o(o)
return m
def _lma(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
biases: List[torch.Tensor],
q_chunk_size: int,
kv_chunk_size: int,
):
no_q, no_kv = q.shape[-2], k.shape[-2]
# [*, H, Q, C_hidden]
o = q.new_zeros(q.shape)
for q_s in range(0, no_q, q_chunk_size):
q_chunk = q[..., q_s: q_s + q_chunk_size, :]
large_bias_chunks = [
b[..., q_s: q_s + q_chunk_size, :] for b in biases
]
maxes = []
weights = []
values = []
for kv_s in range(0, no_kv, kv_chunk_size):
k_chunk = k[..., kv_s: kv_s + kv_chunk_size, :]
v_chunk = v[..., kv_s: kv_s + kv_chunk_size, :]
small_bias_chunks = [
b[..., kv_s: kv_s + kv_chunk_size] for b in large_bias_chunks
]
a = torch.einsum(
"...hqd,...hkd->...hqk", q_chunk, k_chunk,
)
for b in small_bias_chunks:
a += b
max_a = torch.max(a, dim=-1, keepdim=True)[0]
exp_a = torch.exp(a - max_a)
exp_v = torch.einsum("...hvf,...hqv->...hqf", v_chunk, exp_a)
maxes.append(max_a.detach().squeeze(-1))
weights.append(torch.sum(exp_a, dim=-1))
values.append(exp_v)
chunk_max = torch.stack(maxes, dim=-3)
chunk_weights = torch.stack(weights, dim=-3)
chunk_values = torch.stack(values, dim=-4)
global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0]
max_diffs = torch.exp(chunk_max - global_max)
chunk_values = chunk_values * max_diffs.unsqueeze(-1)
chunk_weights = chunk_weights * max_diffs
all_values = torch.sum(chunk_values, dim=-4)
all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4)
q_chunk_out = all_values / all_weights
o[..., q_s: q_s + q_chunk_size, :] = q_chunk_out
return o
|