Spaces:
Sleeping
Sleeping
File size: 25,974 Bytes
f9da277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import json
import os
import shutil
import random
import sys
from typing import List, Tuple, Optional
import Bio.PDB
import Bio.SeqUtils
import pandas as pd
import numpy as np
OUTPUT_FOLDER = "/tmp/output"
PINDER_ANNOTATIONS = "/tmp/index.parquet"
GSUTIL_PATH = "/tmp/google-cloud-sdk/bin/gsutil"
MAX_SYSTEMS_FOR_CLUSTER = 2
MAX_LENGTH = 350
MAX_TRIES_OF_METHOD = 5
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]:
all_residues = [res for res in chain.get_residues()
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")]
if not all_residues:
return None
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues]
min_res_id = min([i[1] for i in res_and_res_id])
if min_res_id < 1:
print("Negative res id", chain, min_res_id)
factor = -1 * min_res_id + 1
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id]
res_and_res_id_no_collisions = []
for res, res_id in res_and_res_id[::-1]:
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id:
# there is a collision, usually an insertion residue
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions]
res_and_res_id_no_collisions.append((res, res_id))
first_res_id = min([i[1] for i in res_and_res_id_no_collisions])
factor = 1 - first_res_id # start from 1
new_chain = Bio.PDB.Chain.Chain(new_chain_id)
res_and_res_id_no_collisions.sort(key=lambda x: x[1])
for res, res_id in res_and_res_id_no_collisions:
chain.detach_child(res.id)
res.id = (" ", res_id + factor, " ")
new_chain.add(res)
return new_chain
def robust_renumber_protein(pdb_path: str, output_path: str):
if pdb_path.endswith(".pdb"):
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
elif pdb_path.endswith(".cif"):
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path)
else:
raise ValueError("Unknown file type", pdb_path)
assert len(list(pdb_struct)) == 1, "can't extract if more than one model"
model = next(iter(pdb_struct))
chains = list(model.get_chains())
new_model = Bio.PDB.Model.Model(0)
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
for chain, chain_id in zip(chains, chain_ids):
new_chain = do_robust_chain_object_renumber(chain, chain_id)
if new_chain is None:
continue
new_model.add(new_chain)
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb")
new_struct.add(new_model)
io = Bio.PDB.PDBIO()
io.set_structure(new_struct)
io.save(output_path)
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str:
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res}
if len(res_id_to_res) == 0:
print("skipping empty chain", chain.get_id())
return ""
seq = ""
for i in range(1, max(res_id_to_res) + 1):
if i in res_id_to_res:
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname())
else:
seq += "X"
return seq
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]:
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()}
all_chain_seqs = [get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()]
chain_lengths = [len(seq) for seq in all_chain_seqs]
return ("X" * 20).join(all_chain_seqs), chain_lengths
from Bio import PDB
from Bio import pairwise2
def extract_sequence(chain):
seq = ''
residues = []
for res in chain.get_residues():
seq_res = Bio.SeqUtils.seq1(res.get_resname())
if seq_res in ('X', "", " "):
continue
seq += seq_res
residues.append(res)
return seq, residues
def map_residues(alignment, residues_gt, residues_pred):
idx_gt = 0
idx_pred = 0
mapping = []
for i in range(len(alignment.seqA)):
aa_gt = alignment.seqA[i]
aa_pred = alignment.seqB[i]
res_gt = None
res_pred = None
if aa_gt != '-':
res_gt = residues_gt[idx_gt]
idx_gt += 1
if aa_pred != '-':
res_pred = residues_pred[idx_pred]
idx_pred += 1
if res_gt and res_pred:
mapping.append((res_gt, res_pred))
return mapping
class ResidueSelect(PDB.Select):
def __init__(self, residues_to_select):
self.residues_to_select = set(residues_to_select)
def accept_residue(self, residue):
return residue in self.residues_to_select
def count_gapped_single_aa(alignment):
count_non_gap = 0
count_fully_gapped = 0
for i in range(1, len(alignment.seqA) - 1):
if alignment.seqA[i] != '-':
count_non_gap += 1
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
count_fully_gapped += 1
top_ratio = count_fully_gapped / count_non_gap
count_non_gap = 0
count_fully_gapped = 0
for i in range(1, len(alignment.seqB) - 1):
if alignment.seqA[i] != '-':
count_non_gap += 1
if alignment.seqA[i - 1] == '-' and alignment.seqA[i + 1] == '-':
count_fully_gapped += 1
if count_fully_gapped / count_non_gap > top_ratio:
top_ratio = count_fully_gapped / count_non_gap
return top_ratio
def copy_residue_numbering(gt_pdb_path, input_pdb_path):
parser = PDB.PDBParser(QUIET=True)
gt_structure = parser.get_structure('gt', gt_pdb_path)
input_structure = parser.get_structure('input', input_pdb_path)
for res in list(input_structure.get_residues()):
res.id = (' ', res.get_id()[1] + 10000, ' ')
for gt_res, input_res in zip(gt_structure.get_residues(), input_structure.get_residues()):
input_res.id = gt_res.id
io = PDB.PDBIO()
io.set_structure(input_structure)
io.save(input_pdb_path)
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path):
# print("aligning", gt_pdb_path, input_pdb_path, output_gt_path, output_input_path)
parser = PDB.PDBParser(QUIET=True)
gt_structure = parser.get_structure('gt', gt_pdb_path)
pred_structure = parser.get_structure('pred', input_pdb_path)
matched_residues_gt = []
matched_residues_pred = []
total_gt_size = len([res for res in gt_structure.get_residues() if "CA" in res])
used_chain_pred = []
total_mapping_size = 0
for chain_gt in gt_structure.get_chains():
seq_gt, residues_gt = extract_sequence(chain_gt)
best_alignment = None
best_chain_pred = None
best_score = -1
best_residues_pred = None
# Find the best matching chain in pred
for chain_pred in pred_structure.get_chains():
# print("checking", chain_pred.get_id(), chain_gt.get_id())
if chain_pred in used_chain_pred:
continue
seq_pred, residues_pred = extract_sequence(chain_pred)
# print(seq_gt)
# print(seq_pred)
# alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True)
alignments = pairwise2.align.globalms(seq_gt, seq_pred, 2, -10000, -1, 0, one_alignment_only=True)
if not alignments:
continue
# print("checking2", chain_pred.get_id(), chain_gt.get_id())
alignment = alignments[0]
score = alignment.score
if score > best_score:
best_score = score
best_alignment = alignment
best_chain_pred = chain_pred
best_residues_pred = residues_pred
if best_alignment and count_gapped_single_aa(best_alignment) < 0.2:
mapping = map_residues(best_alignment, residues_gt, best_residues_pred)
total_mapping_size += len(mapping)
used_chain_pred.append(best_chain_pred)
for res_gt, res_pred in mapping:
matched_residues_gt.append(res_gt)
matched_residues_pred.append(res_pred)
else:
print(f"No matching chain found for chain {chain_gt.get_id()}")
assert total_mapping_size / total_gt_size > 0.8, \
f"Mapping size too low ({total_mapping_size}/{total_gt_size}), skipping"
print(f"Total mapping size: {total_mapping_size}")
# Write new PDB files with only matched residues
io = PDB.PDBIO()
io.set_structure(gt_structure)
io.save(output_gt_path, ResidueSelect(matched_residues_gt))
io = PDB.PDBIO()
io.set_structure(pred_structure)
io.save(output_input_path, ResidueSelect(matched_residues_pred))
copy_residue_numbering(output_gt_path, output_input_path)
def validate_matching_input_gt(gt_pdb_path, input_pdb_path):
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()]
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()]
if len(gt_residues) != len(input_residues):
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}")
return -1
for res_gt, res_input in zip(gt_residues, input_residues):
if res_gt.get_resname() != res_input.get_resname():
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}")
return -1
return len(input_residues)
def download_pdb(pdb_name, output_folder):
output_path = os.path.join(output_folder, pdb_name)
if os.path.exists(output_path):
return output_path
print("downloading", pdb_name)
os.system(f'{GSUTIL_PATH} -m -q cp "gs://pinder/2024-02/pdbs/{pdb_name}" {output_path}')
return output_path
INTERFACE_MIN_ATOM_DIST = 5
def get_filtered_res(gt_r_res, gt_l_res, max_length: int):
gt_r_ca = np.array([res["CA"].coord for res in gt_r_res])
gt_l_ca = np.array([res["CA"].coord for res in gt_l_res])
if len(gt_r_res) + len(gt_l_res) < max_length:
# continue without cropping
print("no cropping needed", len(gt_r_res), len(gt_l_res))
return gt_r_res, gt_l_res
# close_residues = np.argwhere(scipy.spatial.distance.cdist(gt_r_ca, gt_l_ca) < INTERFACE_MIN_ATOM_DIST)
# gt_r_interface, gt_l_interface = set(), set()
# for i, j in close_residues:
# gt_r_interface.add(gt_r_res[i].id[1])
# gt_l_interface.add(gt_l_res[j].id[1])
inter_dists = gt_r_ca[:, np.newaxis, :] - gt_l_ca[np.newaxis, :, :]
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
min_inter_dist_per_gt_l_res = inter_dists.min(axis=0)
min_inter_dist_per_gt_r_res = inter_dists.min(axis=1)
assert min_inter_dist_per_gt_l_res.shape[0] == len(gt_l_res)
assert min_inter_dist_per_gt_r_res.shape[0] == len(gt_r_res)
min_r_res, max_r_res = min(min_inter_dist_per_gt_r_res), max(min_inter_dist_per_gt_r_res)
min_l_res, max_l_res = min(min_inter_dist_per_gt_l_res), max(min_inter_dist_per_gt_l_res)
r_pocket = [res for res in gt_r_res if min_r_res <= res.id[1] <= max_r_res]
l_pocket = [res for res in gt_l_res if min_l_res <= res.id[1] <= max_l_res]
if len(r_pocket) + len(l_pocket) < max_length:
# add extra residues to both chains to get a total of max_length
res_r_before = [res for res in gt_r_res if res.id[1] < min_r_res]
res_r_after = [res for res in gt_r_res if res.id[1] > max_r_res]
res_l_before = [res for res in gt_l_res if res.id[1] < min_l_res]
res_l_after = [res for res in gt_l_res if res.id[1] > max_l_res]
extra_to_add = max_length - len(r_pocket) - len(l_pocket)
actions = []
if len(res_r_before) > 0:
actions.append("add_r_before")
if len(res_r_after) > 0:
actions.append("add_r_after")
if len(res_l_before) > 0:
actions.append("add_l_before")
if len(res_l_after) > 0:
actions.append("add_l_after")
while extra_to_add > 0 and actions:
action = random.choice(actions)
if action == "add_r_before":
r_pocket.insert(0, res_r_before.pop())
if not len(res_r_before):
actions.remove("add_r_before")
elif action == "add_r_after":
r_pocket.append(res_r_after.pop())
if not len(res_r_after):
actions.remove("add_r_after")
elif action == "add_l_before":
l_pocket.insert(0, res_l_before.pop())
if not len(res_l_before):
actions.remove("add_l_before")
elif action == "add_l_after":
l_pocket.append(res_l_after.pop())
if not len(res_l_after):
actions.remove("add_l_after")
extra_to_add -= 1
print("Extended pocket sizes", len(r_pocket), len(l_pocket), "extra_to_add", extra_to_add)
return r_pocket, l_pocket
print("cropping simply")
# remove residues that are farthest from the interface
res_and_dist_r = [(res, min_inter_dist_per_gt_r_res[res_idx]) for res_idx, res in enumerate(gt_r_res)]
res_and_dist_l = [(res, min_inter_dist_per_gt_l_res[res_idx]) for res_idx, res in enumerate(gt_l_res)]
res_and_dist_r = [(res, dist) for res, dist in res_and_dist_r if res in r_pocket]
res_and_dist_l = [(res, dist) for res, dist in res_and_dist_l if res in l_pocket]
res_and_dist_r = sorted(res_and_dist_r, key=lambda x: x[1], reverse=True)
res_and_dist_l = sorted(res_and_dist_l, key=lambda x: x[1], reverse=True)
while len(res_and_dist_r) + len(res_and_dist_l) > max_length:
if res_and_dist_r[0][1] > res_and_dist_l[0][1]:
res_and_dist_r.pop(0)
else:
res_and_dist_l.pop(0)
return [res for res, _ in res_and_dist_r], [res for res, _ in res_and_dist_l]
def prepare_holo(row, tmp_dir_path, max_length: int):
tmp_gt_r_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_r.pdb")
tmp_gt_l_pdb = os.path.join(tmp_dir_path, f"tmp_{row.id}_gt_l.pdb")
if os.path.exists(tmp_gt_r_pdb) and os.path.exists(tmp_gt_l_pdb):
return tmp_gt_r_pdb, tmp_gt_l_pdb
holo_r_pdb = download_pdb(row.holo_R_pdb, tmp_dir_path)
holo_l_pdb = download_pdb(row.holo_L_pdb, tmp_dir_path)
# make gt and apo that matches
robust_renumber_protein(holo_r_pdb, tmp_gt_r_pdb)
robust_renumber_protein(holo_l_pdb, tmp_gt_l_pdb)
parser = PDB.PDBParser(QUIET=True)
gt_r_prot = parser.get_structure('r', tmp_gt_r_pdb)
gt_l_prot = parser.get_structure('l', tmp_gt_l_pdb)
assert len(list(gt_r_prot.get_chains())) == 1, "can't extract if more than one chain"
assert len(list(gt_l_prot.get_chains())) == 1, "can't extract if more than one chain"
gt_r_res = [res for res in gt_r_prot.get_residues() if "CA" in res]
gt_l_res = [res for res in gt_l_prot.get_residues() if "CA" in res]
to_keep_r, to_keep_l = get_filtered_res(gt_r_res, gt_l_res, max_length)
io = PDB.PDBIO()
io.set_structure(gt_r_prot)
io.save(tmp_gt_r_pdb, ResidueSelect(to_keep_r))
io = PDB.PDBIO()
io.set_structure(gt_l_prot)
io.save(tmp_gt_l_pdb, ResidueSelect(to_keep_l))
return tmp_gt_r_pdb, tmp_gt_l_pdb
def generate_input_pdbs(tmp_input_r_pdb, tmp_input_l_pdb, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_pdb, input_l_output_pdb, gt_r_output_pdb, gt_l_output_pdb):
# print("preparing input pdbs", gt_r_output_pdb)
if not os.path.exists(tmp_input_r_pdb) or not os.path.exists(tmp_input_l_pdb):
raise False
try:
align_gt_and_input(tmp_gt_r_pdb, tmp_input_r_pdb, gt_r_output_pdb, input_r_output_pdb)
protein_size_r = validate_matching_input_gt(gt_r_output_pdb, input_r_output_pdb)
assert protein_size_r > -1, "Failed to validate matching input and gt"
align_gt_and_input(tmp_gt_l_pdb, tmp_input_l_pdb, gt_l_output_pdb, input_l_output_pdb)
protein_size_l = validate_matching_input_gt(gt_l_output_pdb, input_l_output_pdb)
assert protein_size_l > -1, "Failed to validate matching input and gt"
except Exception as e:
print("Failed to align", e)
if os.path.exists(gt_r_output_pdb):
os.remove(gt_r_output_pdb)
if os.path.exists(gt_l_output_pdb):
os.remove(gt_l_output_pdb)
if os.path.exists(input_r_output_pdb):
os.remove(input_r_output_pdb)
if os.path.exists(input_l_output_pdb):
os.remove(input_l_output_pdb)
return False
return True
def _get_rel_path(abs_path):
return os.path.join(os.path.basename(os.path.dirname(abs_path)), os.path.basename(abs_path))
def main(start_ind: Optional[int] = None, end_ind: Optional[int] = None):
print("running with", start_ind, end_ind)
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
output_models_folder = os.path.join(OUTPUT_FOLDER, "pinder_models")
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_train")
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_val")
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "pinder_jsons_test")
output_info = os.path.join(OUTPUT_FOLDER, "pinder_generation_info.csv")
os.makedirs(output_models_folder, exist_ok=True)
os.makedirs(output_train_jsons_folder, exist_ok=True)
os.makedirs(output_val_jsons_folder, exist_ok=True)
os.makedirs(output_test_jsons_folder, exist_ok=True)
split_to_folder = {
"train": output_train_jsons_folder,
"val": output_val_jsons_folder,
"test": output_test_jsons_folder
}
# output_info_file = open(output_info, "a+")
systems = pd.read_parquet(PINDER_ANNOTATIONS)
systems = systems[systems.split.isin(['train', 'val', 'test'])]
cluster_ids = systems["cluster_id"].value_counts()
cluster_ids = cluster_ids[cluster_ids >= 1]
print("There are", len(cluster_ids), "clusters")
# clusters_with_data = 0
# for cluster_id in cluster_ids.index:
# cluster_systems = systems[systems["cluster_id"] == cluster_id]
# with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
# if len(with_apo) > 0:
# print("Cluster", cluster_id, "has", len(with_apo), "systems with apo")
# clusters_with_data += 1
# continue
# with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
# if len(with_pred) > 0:
# print("Cluster", cluster_id, "has", len(with_pred), "systems with pred")
# clusters_with_data += 1
# continue
# print("There are", clusters_with_data, "clusters with data out of", len(cluster_ids))
for cluster_ind, cluster_id in enumerate(sorted(cluster_ids.index)):
if (start_ind is not None and cluster_ind < start_ind) or (end_ind is not None and cluster_ind >= end_ind):
continue
# if cluster_id != "cluster_10004_p":
# continue
tmp_dir_path = os.path.join(OUTPUT_FOLDER, "tmp_" + cluster_id)
os.makedirs(tmp_dir_path, exist_ok=True)
system_id_to_method = {}
cluster_systems = systems[systems["cluster_id"] == cluster_id]
print("--- Starting cluster", cluster_ind, cluster_id, "size", cluster_systems.shape)
with_apo = cluster_systems[cluster_systems.apo_R & cluster_systems.apo_L]
print("*** APO *** Cluster", cluster_id, "has", len(with_apo), "systems with apo")
for try_counter, row in enumerate(with_apo.itertuples()):
if row.split not in ("test", "val") \
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
continue
print("-- Trying to prepare apo", row.id, row.split)
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
input_r_pdb_path = download_pdb(row.apo_R_pdb, tmp_dir_path)
input_l_pdb_path = download_pdb(row.apo_L_pdb, tmp_dir_path)
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
system_id_to_method[row.id] = "apo"
except Exception as e:
print("Failed to prepare apo", row.id, e)
continue
with_pred = cluster_systems[cluster_systems.predicted_R & cluster_systems.predicted_L]
print("*** Pred *** Cluster", cluster_id, "has", len(with_pred), "systems with pred")
for try_counter, row in enumerate(with_pred.itertuples()):
if row.id in system_id_to_method:
continue
if row.split not in ("test", "val") \
and (try_counter >= MAX_TRIES_OF_METHOD or len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER):
continue
print("-- Trying to prepare pred", row.id, row.split)
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
input_r_pdb_path = download_pdb(row.predicted_R_pdb, tmp_dir_path)
input_l_pdb_path = download_pdb(row.predicted_L_pdb, tmp_dir_path)
if generate_input_pdbs(input_r_pdb_path, input_l_pdb_path, tmp_gt_r_pdb, tmp_gt_l_pdb,
input_r_output_path, input_l_output_path, gt_r_output_path, gt_l_output_path):
system_id_to_method[row.id] = "pred"
except Exception as e:
print("Failed to prepare pred", row.id, e)
# default - use gt
print("*** GT *** ")
for row in cluster_systems.itertuples():
if row.id in system_id_to_method:
continue
if row.split not in ("test", "val") and len(system_id_to_method) >= MAX_SYSTEMS_FOR_CLUSTER:
continue
try:
tmp_gt_r_pdb, tmp_gt_l_pdb = prepare_holo(row, tmp_dir_path, MAX_LENGTH)
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
shutil.copyfile(tmp_gt_r_pdb, gt_r_output_path)
shutil.copyfile(tmp_gt_r_pdb, input_r_output_path)
shutil.copyfile(tmp_gt_l_pdb, gt_l_output_path)
shutil.copyfile(tmp_gt_l_pdb, input_l_output_path)
system_id_to_method[row.id] = "gt"
except Exception as e:
print("Failed to prepare gt", row.id, e)
# save jsons
for row in cluster_systems.itertuples():
if row.id not in system_id_to_method:
continue
output_json_path = os.path.join(split_to_folder[row.split], f"{row.id}.json")
gt_r_output_path = os.path.join(output_models_folder, f"{row.id}_gt_r.pdb")
gt_l_output_path = os.path.join(output_models_folder, f"{row.id}_gt_l.pdb")
input_r_output_path = os.path.join(output_models_folder, f"{row.id}_input_r.pdb")
input_l_output_path = os.path.join(output_models_folder, f"{row.id}_input_l.pdb")
protein_r_seq_len = validate_matching_input_gt(gt_r_output_path, input_r_output_path)
protein_l_seq_len = validate_matching_input_gt(gt_l_output_path, input_l_output_path)
json_data = {
"input_r_structure": _get_rel_path(input_r_output_path),
"input_l_structure": _get_rel_path(input_l_output_path),
"gt_r_structure": _get_rel_path(gt_r_output_path),
"gt_l_structure": _get_rel_path(gt_l_output_path),
"resolution": 1.0,
"protein_r_seq_len": protein_r_seq_len,
"protein_l_seq_len": protein_l_seq_len,
"uniprot_r": row.uniprot_R,
"uniprot_l": row.uniprot_L,
"cluster": row.cluster_id,
"input_protein_source": system_id_to_method[row.id],
"pdb_id": row.id,
}
open(output_json_path, "w").write(json.dumps(json_data, indent=4))
print("******* saved", row.id, system_id_to_method[row.id], flush=True)
shutil.rmtree(tmp_dir_path)
print("total systems", len(systems))
if __name__ == '__main__':
if len(sys.argv) == 3:
main(int(sys.argv[1]), int(sys.argv[2]))
else:
main() |