benticha commited on
Commit
23e7cbd
·
1 Parent(s): a7d8a51

added spinners

Browse files
Files changed (1) hide show
  1. app.py +56 -47
app.py CHANGED
@@ -42,14 +42,20 @@ for msg in st.session_state.langchain_messages:
42
  with st.chat_message(msg.type, avatar=avatar):
43
  st.markdown(msg.content)
44
 
45
- if prompt := st.chat_input(placeholder="What do you need to know about SUP'COM ?"):
46
- st.chat_message("user").write(prompt)
 
 
 
 
 
47
  with st.chat_message("assistant", avatar="🦜"):
48
  message_placeholder = st.empty()
49
  full_response = ""
50
  # Define the basic input structure for the chains
51
  input_dict = {"input": prompt}
52
 
 
53
  with collect_runs() as cb:
54
  for chunk in chain.stream(input_dict, config={"tags": ["SUP'ASSISTANT"]}):
55
  full_response += chunk.content
@@ -58,23 +64,24 @@ if prompt := st.chat_input(placeholder="What do you need to know about SUP'COM ?
58
  st.session_state.run_id = cb.traced_runs[0].id
59
  message_placeholder.markdown(full_response)
60
 
61
- run_id = st.session_state.run_id
62
- question_embedding = get_embeddings(prompt)
63
- answer_embedding = get_embeddings(full_response)
64
- # Add question and answer to Qdrant
65
- qdrant_client.upload_collection(
66
- collection_name="chat-history",
67
- payload=[
68
- {"text": prompt, "type": "question", "question_ID": run_id},
69
- {"text": full_response, "type": "answer", "question_ID": run_id}
70
- ],
71
- vectors=[
72
- question_embedding,
73
- answer_embedding,
74
- ],
75
- parallel=4,
76
- max_retries=3,
77
- )
 
78
 
79
 
80
 
@@ -106,35 +113,37 @@ if st.session_state.get("run_id"):
106
 
107
  # Record the feedback with the formulated feedback type string
108
  # and optional comment
109
- feedback_record = client.create_feedback(
110
- run_id,
111
- feedback_type_str,
112
- score=score,
113
- comment=feedback.get("text"),
114
- )
115
- st.session_state.feedback = {
116
- "feedback_id": str(feedback_record.id),
117
- "score": score,
118
- }
 
119
  else:
120
  st.warning("Invalid feedback score.")
121
- if feedback.get("text"):
122
- comment = feedback.get("text")
123
- feedback_embedding = get_embeddings(comment)
124
- else:
125
- comment = "no comment"
126
- feedback_embedding = get_embeddings(comment)
127
 
128
-
129
- qdrant_client.upload_collection(
130
- collection_name="chat-history",
131
- payload=[
132
- {"text": comment,"Score:":score, "type": "feedback", "question_ID": run_id}
133
- ],
134
- vectors=[
135
- feedback_embedding
136
- ],
137
- parallel=4,
138
- max_retries=3,
139
- )
140
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  with st.chat_message(msg.type, avatar=avatar):
43
  st.markdown(msg.content)
44
 
45
+
46
+ prompt = st.chat_input(placeholder="What do you need to know about SUP'COM ?")
47
+
48
+ if prompt :
49
+ with st.chat_message("user"):
50
+ st.write(prompt)
51
+
52
  with st.chat_message("assistant", avatar="🦜"):
53
  message_placeholder = st.empty()
54
  full_response = ""
55
  # Define the basic input structure for the chains
56
  input_dict = {"input": prompt}
57
 
58
+
59
  with collect_runs() as cb:
60
  for chunk in chain.stream(input_dict, config={"tags": ["SUP'ASSISTANT"]}):
61
  full_response += chunk.content
 
64
  st.session_state.run_id = cb.traced_runs[0].id
65
  message_placeholder.markdown(full_response)
66
 
67
+ with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
68
+ run_id = st.session_state.run_id
69
+ question_embedding = get_embeddings(prompt)
70
+ answer_embedding = get_embeddings(full_response)
71
+ # Add question and answer to Qdrant
72
+ qdrant_client.upload_collection(
73
+ collection_name="chat-history",
74
+ payload=[
75
+ {"text": prompt, "type": "question", "question_ID": run_id},
76
+ {"text": full_response, "type": "answer", "question_ID": run_id}
77
+ ],
78
+ vectors=[
79
+ question_embedding,
80
+ answer_embedding,
81
+ ],
82
+ parallel=4,
83
+ max_retries=3,
84
+ )
85
 
86
 
87
 
 
113
 
114
  # Record the feedback with the formulated feedback type string
115
  # and optional comment
116
+ with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
117
+ feedback_record = client.create_feedback(
118
+ run_id,
119
+ feedback_type_str,
120
+ score=score,
121
+ comment=feedback.get("text"),
122
+ )
123
+ st.session_state.feedback = {
124
+ "feedback_id": str(feedback_record.id),
125
+ "score": score,
126
+ }
127
  else:
128
  st.warning("Invalid feedback score.")
 
 
 
 
 
 
129
 
130
+ with st.spinner("Just a sec! Dont enter prompts while loading pelase!"):
131
+ if feedback.get("text"):
132
+ comment = feedback.get("text")
133
+ feedback_embedding = get_embeddings(comment)
134
+ else:
135
+ comment = "no comment"
136
+ feedback_embedding = get_embeddings(comment)
137
+
 
 
 
 
138
 
139
+ qdrant_client.upload_collection(
140
+ collection_name="chat-history",
141
+ payload=[
142
+ {"text": comment,"Score:":score, "type": "feedback", "question_ID": run_id}
143
+ ],
144
+ vectors=[
145
+ feedback_embedding
146
+ ],
147
+ parallel=4,
148
+ max_retries=3,
149
+ )