Spaces:
Sleeping
Sleeping
initial commit
Browse files- .gitattributes +1 -0
- app.py +96 -0
- requirements.txt +13 -0
- sup-knowledge-eng-nomic/chroma.sqlite3 +3 -0
- sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/data_level0.bin +3 -0
- sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/header.bin +3 -0
- sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/length.bin +3 -0
- sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/link_lists.bin +0 -0
- utils.py +93 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain import memory as lc_memory
|
3 |
+
from langsmith import Client
|
4 |
+
from streamlit_feedback import streamlit_feedback
|
5 |
+
from utils import get_expression_chain, retriever
|
6 |
+
from langchain_core.tracers.context import collect_runs
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
client = Client()
|
11 |
+
|
12 |
+
st.set_page_config(page_title = "SUP'ASSISTANT")
|
13 |
+
st.subheader("Hey there! How can I help you today!")
|
14 |
+
|
15 |
+
memory = lc_memory.ConversationBufferMemory(
|
16 |
+
chat_memory=lc_memory.StreamlitChatMessageHistory(key="langchain_messages"),
|
17 |
+
return_messages=True,
|
18 |
+
memory_key="chat_history",
|
19 |
+
)
|
20 |
+
st.sidebar.markdown("## Feedback Scale")
|
21 |
+
feedback_option = (
|
22 |
+
"thumbs" if st.sidebar.toggle(label="`Faces` ⇄ `Thumbs`", value=False) else "faces"
|
23 |
+
)
|
24 |
+
with st.sidebar:
|
25 |
+
model_name = st.selectbox("**Model**", options=["llama-3.1-70b-versatile","gemma2-9b-it","gemma-7b-it","llama-3.2-3b-preview", "llama3-70b-8192", "mixtral-8x7b-32768"])
|
26 |
+
temp = st.slider("**Temperature**", min_value=0.0, max_value=1.0, step=0.001)
|
27 |
+
n_docs = st.number_input("**Number of retireved documents**", min_value=0, max_value=10, value=5, step=1)
|
28 |
+
if st.sidebar.button("Clear message history"):
|
29 |
+
print("Clearing message history")
|
30 |
+
memory.clear()
|
31 |
+
|
32 |
+
retriever = retriever(n_docs=n_docs)
|
33 |
+
# Create Chain
|
34 |
+
chain = get_expression_chain(retriever,model_name,temp)
|
35 |
+
|
36 |
+
for msg in st.session_state.langchain_messages:
|
37 |
+
avatar = "🦜" if msg.type == "ai" else None
|
38 |
+
with st.chat_message(msg.type, avatar=avatar):
|
39 |
+
st.markdown(msg.content)
|
40 |
+
|
41 |
+
if prompt := st.chat_input(placeholder="Ask me a question!"):
|
42 |
+
st.chat_message("user").write(prompt)
|
43 |
+
with st.chat_message("assistant", avatar="🦜"):
|
44 |
+
message_placeholder = st.empty()
|
45 |
+
full_response = ""
|
46 |
+
# Define the basic input structure for the chains
|
47 |
+
input_dict = {"input": prompt}
|
48 |
+
|
49 |
+
with collect_runs() as cb:
|
50 |
+
for chunk in chain.stream(input_dict, config={"tags": ["Streamlit Chat"]}):
|
51 |
+
full_response += chunk.content
|
52 |
+
message_placeholder.markdown(full_response + "▌")
|
53 |
+
memory.save_context(input_dict, {"output": full_response})
|
54 |
+
st.session_state.run_id = cb.traced_runs[0].id
|
55 |
+
message_placeholder.markdown(full_response)
|
56 |
+
|
57 |
+
if st.session_state.get("run_id"):
|
58 |
+
run_id = st.session_state.run_id
|
59 |
+
feedback = streamlit_feedback(
|
60 |
+
feedback_type=feedback_option,
|
61 |
+
optional_text_label="[Optional] Please provide an explanation",
|
62 |
+
key=f"feedback_{run_id}",
|
63 |
+
)
|
64 |
+
|
65 |
+
# Define score mappings for both "thumbs" and "faces" feedback systems
|
66 |
+
score_mappings = {
|
67 |
+
"thumbs": {"👍": 1, "👎": 0},
|
68 |
+
"faces": {"😀": 1, "🙂": 0.75, "😐": 0.5, "🙁": 0.25, "😞": 0},
|
69 |
+
}
|
70 |
+
|
71 |
+
# Get the score mapping based on the selected feedback option
|
72 |
+
scores = score_mappings[feedback_option]
|
73 |
+
|
74 |
+
if feedback:
|
75 |
+
# Get the score from the selected feedback option's score mapping
|
76 |
+
score = scores.get(feedback["score"])
|
77 |
+
|
78 |
+
if score is not None:
|
79 |
+
# Formulate feedback type string incorporating the feedback option
|
80 |
+
# and score value
|
81 |
+
feedback_type_str = f"{feedback_option} {feedback['score']}"
|
82 |
+
|
83 |
+
# Record the feedback with the formulated feedback type string
|
84 |
+
# and optional comment
|
85 |
+
feedback_record = client.create_feedback(
|
86 |
+
run_id,
|
87 |
+
feedback_type_str,
|
88 |
+
score=score,
|
89 |
+
comment=feedback.get("text"),
|
90 |
+
)
|
91 |
+
st.session_state.feedback = {
|
92 |
+
"feedback_id": str(feedback_record.id),
|
93 |
+
"score": score,
|
94 |
+
}
|
95 |
+
else:
|
96 |
+
st.warning("Invalid feedback score.")
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain-groq
|
2 |
+
langchain-core
|
3 |
+
streamlit
|
4 |
+
langchain-chroma
|
5 |
+
langchain-nomic
|
6 |
+
langchain
|
7 |
+
nomic
|
8 |
+
python-dotenv
|
9 |
+
langchain-community
|
10 |
+
rank_bm25
|
11 |
+
cohere
|
12 |
+
nomic[local]
|
13 |
+
streamlit-feedback
|
sup-knowledge-eng-nomic/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:112a7ee3f7fb675803ed49ffe7901311156373f8ba3142c3a3026b2f3936d633
|
3 |
+
size 7704576
|
sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a13e72541800c513c73dccea69f79e39cf4baef4fa23f7e117c0d6b0f5f99670
|
3 |
+
size 3212000
|
sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
|
3 |
+
size 100
|
sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5fb64b021f47ff585087f63e019088911fa892704ffa3e9506f3a120d807cfa
|
3 |
+
size 4000
|
sup-knowledge-eng-nomic/ec6754ec-5fa6-4b04-bfb6-d2f052cd81fe/link_lists.bin
ADDED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_chroma import Chroma
|
2 |
+
from langchain_nomic.embeddings import NomicEmbeddings
|
3 |
+
from langchain_core.documents import Document
|
4 |
+
from langchain.retrievers.document_compressors import CohereRerank
|
5 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
6 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_core.runnables import Runnable, RunnableMap
|
11 |
+
from langchain.schema import BaseRetriever
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
def retriever(n_docs=5):
|
15 |
+
vector_database_path = "sup-knowledge-eng-nomic"
|
16 |
+
|
17 |
+
embeddings_model = NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local")
|
18 |
+
|
19 |
+
|
20 |
+
vectorstore = Chroma(collection_name="sup-store-eng-nomic",
|
21 |
+
persist_directory=vector_database_path,
|
22 |
+
embedding_function=embeddings_model)
|
23 |
+
|
24 |
+
vs_retriever = vectorstore.as_retriever(k=n_docs)
|
25 |
+
|
26 |
+
texts = vectorstore.get()['documents']
|
27 |
+
metadatas = vectorstore.get()["metadatas"]
|
28 |
+
|
29 |
+
documents = []
|
30 |
+
for i in range(len(texts)):
|
31 |
+
doc = Document(page_content=texts[i], metadata=metadatas[i])
|
32 |
+
documents.append(doc)
|
33 |
+
|
34 |
+
keyword_retriever = BM25Retriever.from_documents(documents)
|
35 |
+
keyword_retriever.k = n_docs
|
36 |
+
|
37 |
+
ensemble_retriever = EnsembleRetriever(retrievers=[vs_retriever,keyword_retriever],
|
38 |
+
weights=[0.5, 0.5])
|
39 |
+
|
40 |
+
compressor = CohereRerank(model="rerank-english-v3.0")
|
41 |
+
retriever = ContextualCompressionRetriever(
|
42 |
+
base_compressor=compressor, base_retriever=ensemble_retriever
|
43 |
+
)
|
44 |
+
|
45 |
+
return retriever
|
46 |
+
|
47 |
+
rag_prompt = """You are an assistant for question-answering tasks.
|
48 |
+
The questions that you will be asked will mainly be about SUP'COM (also known as Higher School Of Communication Of Tunis).
|
49 |
+
|
50 |
+
Here is the context to use to answer the question:
|
51 |
+
|
52 |
+
{context}
|
53 |
+
|
54 |
+
Think carefully about the above context.
|
55 |
+
|
56 |
+
Now, review the user question:
|
57 |
+
|
58 |
+
{input}
|
59 |
+
|
60 |
+
Provide an answer to this questions using only the above context.
|
61 |
+
|
62 |
+
Answer:"""
|
63 |
+
|
64 |
+
# Post-processing
|
65 |
+
def format_docs(docs):
|
66 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
67 |
+
|
68 |
+
def get_expression_chain(retriever: BaseRetriever, model_name="llama-3.1-70b-versatile", temp=0
|
69 |
+
) -> Runnable:
|
70 |
+
"""Return a chain defined primarily in LangChain Expression Language"""
|
71 |
+
def retrieve_context(input_text):
|
72 |
+
# Use the retriever to fetch relevant documents
|
73 |
+
docs = retriever.get_relevant_documents(input_text)
|
74 |
+
return format_docs(docs)
|
75 |
+
|
76 |
+
ingress = RunnableMap(
|
77 |
+
{
|
78 |
+
"input": lambda x: x["input"],
|
79 |
+
"context": lambda x: retrieve_context(x["input"]),
|
80 |
+
}
|
81 |
+
)
|
82 |
+
prompt = ChatPromptTemplate.from_messages(
|
83 |
+
[
|
84 |
+
(
|
85 |
+
"system",
|
86 |
+
rag_prompt
|
87 |
+
)
|
88 |
+
]
|
89 |
+
)
|
90 |
+
llm = ChatGroq(model=model_name, temperature=temp)
|
91 |
+
|
92 |
+
chain = ingress | prompt | llm
|
93 |
+
return chain
|