Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import streamlit as st | |
import tensorflow as tf | |
def process_image(uploaded_file): | |
file_content = uploaded_file.read() | |
nparr = np.frombuffer(file_content, np.uint8) | |
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR) | |
return image | |
model = tf.saved_model.load("./model") | |
def perform_segmentation(image): | |
resized_image = cv2.resize(image, (128, 128)) | |
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB) | |
normalized_image = resized_image / 255.0 | |
input_array = np.expand_dims(normalized_image, axis=0).astype(np.float32) | |
segmented_mask = model(tf.constant(input_array))[0] | |
threshold = 0.5 | |
binary_mask = (segmented_mask > threshold).numpy().astype(np.uint8) | |
# Resize the binary mask to match the size of the input image | |
binary_mask_resized = cv2.resize(binary_mask, (image.shape[1], image.shape[0])) | |
segmented_image = cv2.bitwise_and(image, image, mask=binary_mask_resized) | |
return segmented_image | |
def main(): | |
st.title("Solution Challenge") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = process_image(uploaded_file) | |
segmented_image = perform_segmentation(image) | |
# Create two columns to display images side by side | |
col1, col2 = st.columns(2) | |
# Display original image in the first column | |
col1.image(image, caption="Original Image", use_column_width=True) | |
# Display segmented image in the second column | |
col2.image( | |
segmented_image, caption="Segmentation Results", use_column_width=True | |
) | |
if __name__ == "__main__": | |
main() | |