File size: 3,948 Bytes
e6d0f8f
 
 
 
 
 
 
 
 
 
 
 
 
0081443
e6d0f8f
 
 
0081443
 
 
e6d0f8f
 
 
0081443
 
 
 
 
 
 
 
 
 
e6d0f8f
 
 
 
0081443
 
e6d0f8f
 
 
 
 
0081443
 
 
 
e6d0f8f
0081443
e6d0f8f
0081443
 
 
 
 
 
 
 
 
 
 
e6d0f8f
0081443
e6d0f8f
 
 
 
 
 
 
 
 
 
 
 
 
0081443
 
e6d0f8f
 
0081443
e6d0f8f
 
 
 
0081443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d0f8f
0081443
e6d0f8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mean average precision metric"""

import evaluate
import datasets
import json
from ranx import Qrels, Run
from ranx import evaluate as ran_evaluate


_CITATION = """\
@inproceedings{ranx,
  author       = {Elias Bassani},
  title        = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
  booktitle    = {{ECIR} {(2)}},
  series       = {Lecture Notes in Computer Science},
  volume       = {13186},
  pages        = {259--264},
  publisher    = {Springer},
  year         = {2022},
  doi          = {10.1007/978-3-030-99739-7\_30}
}
"""

_DESCRIPTION = """\
This is the mean average precision (map) metric for retrieval systems.
It is the average of the precision scores computer after each relevant document is got. You can refer to [here](https://amenra.github.io/ranx/metrics/#mean-average-precision)
"""


_KWARGS_DESCRIPTION = """
Args:
    predictions: dictionary of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query 
        One dictionary per query.  
    references: List of list of strings where each lists consists of the relevant document names for a given query in a sorted relevancy order.
        The outer list is sorted from query one to n.
Returns:
    map (`float`): mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
Examples:
   
    >>> my_new_module = evaluate.load("map")
    >>> results = my_new_module.compute(
        references=[
            ["d_1", "d_2"],
            ["d_2", "d_3", "d_5"]
        ]
    predictions={ 
        "q_1": { "d_1": 0.9, "d_2": 0.8, },
        "q_2": { "d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3} }
)
    >>> print(results)
    {'map': 0.902777}
"""

@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class map(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions':  datasets.Value("string"), #list[dict],
                'references':  datasets.Value("string")#datasets.Sequence(datasets.Sequence(datasets.Value("string"))), #list[list[str]],
            }),
            # Homepage of the module for documentation
            reference_urls=["https://amenra.github.io/ranx/"]
        )

    def _compute(self, predictions, references):
        """Returns the scores"""
        preds = {}
        refs = {}
        for pred in predictions:
            preds = preds | json.loads(pred)
        for ref in references:
            refs = refs | json.loads(ref)
        
        run = Run(preds)
        """gt_dict = {}
        for i in range(len(references)):
            per_query_gt = {}
            for rank in range(len(references[i])):
                per_query_gt[references[i][rank]] = rank+1
            gt_dict[f"q_{i+1}"] = per_query_gt"""
        qrels = Qrels(refs)
        map_score = ran_evaluate(qrels, run, "map")
        return {
            "map": map_score,
        }