map / map.py
berkatil's picture
first draft
0081443
raw
history blame
3.95 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mean average precision metric"""
import evaluate
import datasets
import json
from ranx import Qrels, Run
from ranx import evaluate as ran_evaluate
_CITATION = """\
@inproceedings{ranx,
author = {Elias Bassani},
title = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
booktitle = {{ECIR} {(2)}},
series = {Lecture Notes in Computer Science},
volume = {13186},
pages = {259--264},
publisher = {Springer},
year = {2022},
doi = {10.1007/978-3-030-99739-7\_30}
}
"""
_DESCRIPTION = """\
This is the mean average precision (map) metric for retrieval systems.
It is the average of the precision scores computer after each relevant document is got. You can refer to [here](https://amenra.github.io/ranx/metrics/#mean-average-precision)
"""
_KWARGS_DESCRIPTION = """
Args:
predictions: dictionary of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query
One dictionary per query.
references: List of list of strings where each lists consists of the relevant document names for a given query in a sorted relevancy order.
The outer list is sorted from query one to n.
Returns:
map (`float`): mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
Examples:
>>> my_new_module = evaluate.load("map")
>>> results = my_new_module.compute(
references=[
["d_1", "d_2"],
["d_2", "d_3", "d_5"]
]
predictions={
"q_1": { "d_1": 0.9, "d_2": 0.8, },
"q_2": { "d_2": 0.9, "d_1": 0.8, "d_5": 0.7, "d_3": 0.3} }
)
>>> print(results)
{'map': 0.902777}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class map(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value("string"), #list[dict],
'references': datasets.Value("string")#datasets.Sequence(datasets.Sequence(datasets.Value("string"))), #list[list[str]],
}),
# Homepage of the module for documentation
reference_urls=["https://amenra.github.io/ranx/"]
)
def _compute(self, predictions, references):
"""Returns the scores"""
preds = {}
refs = {}
for pred in predictions:
preds = preds | json.loads(pred)
for ref in references:
refs = refs | json.loads(ref)
run = Run(preds)
"""gt_dict = {}
for i in range(len(references)):
per_query_gt = {}
for rank in range(len(references[i])):
per_query_gt[references[i][rank]] = rank+1
gt_dict[f"q_{i+1}"] = per_query_gt"""
qrels = Qrels(refs)
map_score = ran_evaluate(qrels, run, "map")
return {
"map": map_score,
}