berkatil commited on
Commit
54d0179
·
1 Parent(s): 5786c05

add k param

Browse files
Files changed (2) hide show
  1. README.md +1 -0
  2. map.py +5 -9
README.md CHANGED
@@ -31,6 +31,7 @@ It is the average of the precision scores computer after each relevant document
31
  ### Inputs
32
  - **predictions:** a list of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query. One dictionary per query. The dictionaries should be converted to string.
33
  - **references:** a lift of list of dictionaries where each dictionary consists of the relevant order for the documents for a given query in a sorted relevancy order. The dictionaries should be converted to string.
 
34
 
35
  ### Output Values
36
  - **map (`float`):** mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
 
31
  ### Inputs
32
  - **predictions:** a list of dictionaries where each dictionary consists of document relevancy scores produced by the model for a given query. One dictionary per query. The dictionaries should be converted to string.
33
  - **references:** a lift of list of dictionaries where each dictionary consists of the relevant order for the documents for a given query in a sorted relevancy order. The dictionaries should be converted to string.
34
+ - **k:** an optional paramater whose default is None to calculate map@k
35
 
36
  ### Output Values
37
  - **map (`float`):** mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
map.py CHANGED
@@ -46,6 +46,7 @@ Args:
46
  One dictionary per query.
47
  references: List of list of strings where each lists consists of the relevant document names for a given query in a sorted relevancy order.
48
  The outer list is sorted from query one to n.
 
49
  Returns:
50
  map (`float`): mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
51
  Examples:
@@ -75,14 +76,15 @@ class map(evaluate.Metric):
75
  inputs_description=_KWARGS_DESCRIPTION,
76
  # This defines the format of each prediction and reference
77
  features=datasets.Features({
78
- 'predictions': datasets.Value("string"), #list[dict],
79
- 'references': datasets.Value("string")#datasets.Sequence(datasets.Sequence(datasets.Value("string"))), #list[list[str]],
 
80
  }),
81
  # Homepage of the module for documentation
82
  reference_urls=["https://amenra.github.io/ranx/"]
83
  )
84
 
85
- def _compute(self, predictions, references):
86
  """Returns the scores"""
87
  preds = {}
88
  refs = {}
@@ -92,12 +94,6 @@ class map(evaluate.Metric):
92
  refs = refs | json.loads(ref)
93
 
94
  run = Run(preds)
95
- """gt_dict = {}
96
- for i in range(len(references)):
97
- per_query_gt = {}
98
- for rank in range(len(references[i])):
99
- per_query_gt[references[i][rank]] = rank+1
100
- gt_dict[f"q_{i+1}"] = per_query_gt"""
101
  qrels = Qrels(refs)
102
  map_score = ran_evaluate(qrels, run, "map")
103
  return {
 
46
  One dictionary per query.
47
  references: List of list of strings where each lists consists of the relevant document names for a given query in a sorted relevancy order.
48
  The outer list is sorted from query one to n.
49
+ k: `int`, optional, default is None, it is to calculate map@k
50
  Returns:
51
  map (`float`): mean average precision score. Minimum possible value is 0. Maximum possible value is 1.0
52
  Examples:
 
76
  inputs_description=_KWARGS_DESCRIPTION,
77
  # This defines the format of each prediction and reference
78
  features=datasets.Features({
79
+ 'predictions': datasets.Value("string"),
80
+ 'references': datasets.Value("string"),
81
+ 'k': datasets.Value("int", default=None)
82
  }),
83
  # Homepage of the module for documentation
84
  reference_urls=["https://amenra.github.io/ranx/"]
85
  )
86
 
87
+ def _compute(self, predictions, references, k=None):
88
  """Returns the scores"""
89
  preds = {}
90
  refs = {}
 
94
  refs = refs | json.loads(ref)
95
 
96
  run = Run(preds)
 
 
 
 
 
 
97
  qrels = Qrels(refs)
98
  map_score = ran_evaluate(qrels, run, "map")
99
  return {