Spaces:
Running
Running
File size: 1,842 Bytes
19759e2 f90365c b697762 1cb6e78 19759e2 640b157 19759e2 b697762 1cb6e78 19759e2 101af6f 19759e2 101af6f 1cb6e78 19759e2 101af6f f90365c 101af6f 19759e2 b697762 eb4c8c4 1cb6e78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
from streamlit import session_state as session
from src.config.configs import ProjectPaths
import numpy as np
from src.laion_clap.inference import AudioEncoder
import pickle
import torch
import pandas as pd
import json
@st.cache_data
def load_data():
vectors = np.load(ProjectPaths.DATA_DIR.joinpath("vectors", "audio_representations.npy"))
with open(ProjectPaths.DATA_DIR.joinpath("vectors", "song_names.pkl"), "rb") as reader:
song_names = pickle.load(reader)
with open(ProjectPaths.DATA_DIR.joinpath("json", "youtube_data.json"), "r") as reader:
youtube_data = json.load(reader)
df_youtube = pd.DataFrame(youtube_data)
df_youtube["id"] = df_youtube["artist_name"] + " - " + df_youtube["track_name"] + ".wav"
df_youtube.set_index("id", inplace=True)
return vectors, song_names, df_youtube
@st.cache_resource
def load_model():
recommender = AudioEncoder()
return recommender
recommender = load_model()
audio_vectors, song_names, df_youtube = load_data()
st.title("""Curate me a Playlist.""")
session.text_input = st.text_input(label="Describe a playlist")
session.slider_count = st.slider(label="Track counts", min_value=5, max_value=30, step=5)
buffer1, col1, buffer2 = st.columns([1.45, 1, 1])
is_clicked = col1.button(label="Curate")
if is_clicked:
text_embed = recommender.get_text_embedding(session.text_input)
with torch.no_grad():
ranking = torch.tensor(audio_vectors) @ torch.tensor(text_embed).t()
ranking = ranking[:, 0].reshape(-1, 1)
dataframe = pd.DataFrame(ranking, columns=[session.text_input], index=song_names).nlargest(int(session.slider_count), session.text_input).rename(columns={session.text_input: "score"})
dataframe["link"] = df_youtube["link"]
st.dataframe(dataframe, use_container_width=True)
|