Spaces:
Running
Running
""" | |
Contrastive Language-Audio Pretraining Model from LAION | |
-------------------------------------------------------- | |
Paper: https://arxiv.org/abs/2211.06687 | |
Authors (equal contributions): Ke Chen, Yusong Wu, Tianyu Zhang, Yuchen Hui | |
Support: LAION | |
""" | |
import numpy as np | |
import librosa | |
import torch | |
import laion_clap | |
# quantization | |
def int16_to_float32(x): | |
return (x / 32767.0).astype(np.float32) | |
def float32_to_int16(x): | |
x = np.clip(x, a_min=-1., a_max=1.) | |
return (x * 32767.).astype(np.int16) | |
model = laion_clap.CLAP_Module(enable_fusion=False) | |
model.load_ckpt() | |
# Directly get audio embeddings from audio files | |
audio_file = [ | |
'/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_short.wav', | |
'/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_long.wav' | |
] | |
audio_embed = model.get_audio_embedding_from_filelist(x = audio_file, use_tensor=False) | |
print(audio_embed[:,-20:]) | |
print(audio_embed.shape) | |
# Get audio embeddings from audio data | |
audio_data, _ = librosa.load('/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_short.wav', sr=48000) # sample rate should be 48000 | |
audio_data = audio_data.reshape(1, -1) # Make it (1,T) or (N,T) | |
audio_embed = model.get_audio_embedding_from_data(x = audio_data, use_tensor=False) | |
print(audio_embed[:,-20:]) | |
print(audio_embed.shape) | |
# Directly get audio embeddings from audio files, but return torch tensor | |
audio_file = [ | |
'/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_short.wav', | |
'/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_long.wav' | |
] | |
audio_embed = model.get_audio_embedding_from_filelist(x = audio_file, use_tensor=True) | |
print(audio_embed[:,-20:]) | |
print(audio_embed.shape) | |
# Get audio embeddings from audio data | |
audio_data, _ = librosa.load('/home/la/kechen/Research/KE_CLAP/ckpt/test_clap_short.wav', sr=48000) # sample rate should be 48000 | |
audio_data = audio_data.reshape(1, -1) # Make it (1,T) or (N,T) | |
audio_data = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float() # quantize before send it in to the model | |
audio_embed = model.get_audio_embedding_from_data(x = audio_data, use_tensor=True) | |
print(audio_embed[:,-20:]) | |
print(audio_embed.shape) | |
# Get text embedings from texts: | |
text_data = ["I love the contrastive learning", "I love the pretrain model"] | |
text_embed = model.get_text_embedding(text_data) | |
print(text_embed) | |
print(text_embed.shape) | |
# Get text embedings from texts, but return torch tensor: | |
text_data = ["I love the contrastive learning", "I love the pretrain model"] | |
text_embed = model.get_text_embedding(text_data, use_tensor=True) | |
print(text_embed) | |
print(text_embed.shape) | |