Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("sergeantson/GPT2_Large_Law") | |
model = AutoModelForCausalLM.from_pretrained("sergeantson/GPT2_Large_Law") | |
def generate_text(input_text, max_length, num_return_sequences, temperature, top_k, top_p): | |
inputs = tokenizer(input_text, return_tensors="pt") | |
output = model.generate( | |
**inputs, | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
no_repeat_ngram_size=2 # Prevents repeating n-grams | |
) | |
generated_texts = [tokenizer.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)] | |
return "\n\n".join(generated_texts) | |
# Set up the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter a prompt here...", label="Input Text"), | |
gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length"), | |
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Return Sequences"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p") | |
], | |
outputs="text", | |
title="Legal Text Generator", | |
description="Enter a prompt to generate legal text based on the input." | |
) | |
# Launch the interface | |
iface.launch(share=False) | |