GPT2-Law-Large / app.py
berkerbatur's picture
Update app.py
746017f verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("sergeantson/GPT2_Large_Law")
model = AutoModelForCausalLM.from_pretrained("sergeantson/GPT2_Large_Law")
def generate_text(input_text, max_length, num_return_sequences, temperature, top_k, top_p):
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(
**inputs,
max_length=max_length,
num_return_sequences=num_return_sequences,
temperature=temperature,
top_k=top_k,
top_p=top_p,
no_repeat_ngram_size=2 # Prevents repeating n-grams
)
generated_texts = [tokenizer.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
return "\n\n".join(generated_texts)
# Set up the Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=2, placeholder="Enter a prompt here...", label="Input Text"),
gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Return Sequences"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p")
],
outputs="text",
title="Legal Text Generator",
description="Enter a prompt to generate legal text based on the input."
)
# Launch the interface
iface.launch(share=False)