import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("sergeantson/GPT2_Large_Law") model = AutoModelForCausalLM.from_pretrained("sergeantson/GPT2_Large_Law") def generate_text(input_text, max_length, num_return_sequences, temperature, top_k, top_p): inputs = tokenizer(input_text, return_tensors="pt") output = model.generate( **inputs, max_length=max_length, num_return_sequences=num_return_sequences, temperature=temperature, top_k=top_k, top_p=top_p, no_repeat_ngram_size=2 # Prevents repeating n-grams ) generated_texts = [tokenizer.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)] return "\n\n".join(generated_texts) # Set up the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter a prompt here...", label="Input Text"), gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length"), gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Return Sequences"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p") ], outputs="text", title="Legal Text Generator", description="Enter a prompt to generate legal text based on the input." ) # Launch the interface iface.launch(share=False)