bertin-gpt-j-6B / app.py
versae's picture
Typo
aa7b612
raw
history blame
7.01 kB
import random
import os
import streamlit as st
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "bertin-project/bertin-gpt-j-6B")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))
HEADER_INFO = """
# BERTIN-GPT-J-6B
Spanish BERTIN GPT-J-6B Model.
""".strip()
SIDEBAR_INFO = """
# Configuration
""".strip()
PROMPT_BOX = "Introduzca su texto..."
EXAMPLES = [
"¿Cuál es la capital de Francia? Respuesta:",
]
def style():
st.markdown("""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}
.ltr-box {
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}
.rtl {
text-align: left;
direction: ltr !important;
}
span.result-text {
padding: 3px 3px;
line-height: 32px;
}
span.generated-text {
background-color: rgb(118 200 147 / 13%);
}
</style>""", unsafe_allow_html=True)
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
def load(self):
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
).to(device=DEVICE, non_blocking=True)
_ = self.model.eval()
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
self.generator = pipeline(self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, prompt, generation_kwargs):
max_length = len(self.tokenizer(prompt)["input_ids"]) + generation_kwargs["max_length"]
generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
# generation_kwargs["num_return_sequences"] = 1
# generation_kwargs["return_full_text"] = False
return self.generator(
prompt,
**generation_kwargs,
)[0]["generated_text"]
@st.cache(allow_output_mutation=True)
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
def main():
st.set_page_config(
page_title="BERTIN-GPT-J-6B",
page_icon="🇪🇸",
layout="wide",
initial_sidebar_state="expanded"
)
style()
with st.spinner('Cargando el modelo. Por favor, espere...'):
generator = load_text_generator()
st.sidebar.markdown(SIDEBAR_INFO)
max_length = st.sidebar.slider(
label='Longitud máxima',
help="Número máximo aproximado de palabras a generar).",
min_value=1,
max_value=MAX_LENGTH,
value=50,
step=1
)
top_k = st.sidebar.slider(
label='Top-k',
help="Número de palabras con alta probabilidad a mantener para el filtrado `top-k`",
min_value=40,
max_value=80,
value=50,
step=1
)
top_p = st.sidebar.slider(
label='Top-p',
help="Solo las palabras más probables con probabilidades que sumen `top_p` o más se mantienen para la generación.",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.01
)
temperature = st.sidebar.slider(
label='Temperatura',
help="Valor utilizado para modular las probabilidades de las siguientes palabras generadas.",
min_value=0.1,
max_value=10.0,
value=0.8,
step=0.05
)
do_sample = st.sidebar.selectbox(
label='¿Muestrear?',
options=(True, False),
help="Si no se muestrea se usará una decodificación voraz (_greedy_).",
)
do_clean = st.sidebar.selectbox(
label='¿Limpiar texto?',
options=(True, False),
help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
)
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"do_clean": do_clean,
}
st.markdown(HEADER_INFO)
prompts = EXAMPLES + ["Personalizado"]
prompt = st.selectbox('Ejemplos', prompts, index=len(prompts) - 1)
if prompt == "Personalizado":
prompt_box = PROMPT_BOX
else:
prompt_box = prompt
text = st.text_area("Texto", prompt_box)
generation_kwargs_ph = st.empty()
cleaner = Normalizer()
if st.button("¡Generar!"):
with st.spinner(text="Generando..."):
generation_kwargs_ph.markdown(", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
if text:
generated_text = generator.generate(text, generation_kwargs)
if do_clean:
generated_text = cleaner.clean_txt(generated_text)
if generated_text.strip().startswith(text):
generated_text = generated_text.replace(text, "", 1).strip()
st.markdown(
f'<p class="ltr ltr-box">'
f'<span class="result-text">{text} <span>'
f'<span class="result-text generated-text">{generated_text}</span>'
f'</p>',
unsafe_allow_html=True
)
if __name__ == '__main__':
main()