File size: 15,560 Bytes
07c6a04
 
ab7be96
07c6a04
ab7be96
07c6a04
 
 
 
 
 
 
 
ab7be96
 
 
 
 
 
 
 
 
07c6a04
ab7be96
07c6a04
ab7be96
 
 
 
 
 
 
 
 
 
 
 
 
 
07c6a04
ab7be96
 
 
 
 
 
07c6a04
ab7be96
 
 
 
07c6a04
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab7be96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import functools
import math
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.vision_transformer import Mlp


class CogVideoXPatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 16,
        embed_dim: int = 1920,
        text_embed_dim: int = 4096,
        bias: bool = True,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )
        self.text_proj = nn.Linear(text_embed_dim, embed_dim)

    def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
        r"""
        Args:
            text_embeds (`torch.Tensor`):
                Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
            image_embeds (`torch.Tensor`):
                Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
        """
        text_embeds = self.text_proj(text_embeds)

        batch, num_frames, channels, height, width = image_embeds.shape
        image_embeds = image_embeds.reshape(-1, channels, height, width)
        image_embeds = self.proj(image_embeds)
        image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:])
        image_embeds = image_embeds.flatten(3).transpose(2, 3)  # [batch, num_frames, height x width, channels]
        image_embeds = image_embeds.flatten(1, 2)  # [batch, num_frames x height x width, channels]

        embeds = torch.cat(
            [text_embeds, image_embeds], dim=1
        ).contiguous()  # [batch, seq_length + num_frames x height x width, channels]
        return embeds


class OpenSoraPatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        patch_size=(2, 4, 4),
        in_chans=3,
        embed_dim=96,
        norm_layer=None,
        flatten=True,
    ):
        super().__init__()
        self.patch_size = patch_size
        self.flatten = flatten

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, D, H, W = x.size()
        if W % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
        if H % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
        if D % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))

        x = self.proj(x)  # (B C T H W)
        if self.norm is not None:
            D, Wh, Ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCTHW -> BNC
        return x


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
        freqs = freqs.to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        if t_freq.dtype != dtype:
            t_freq = t_freq.to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class SizeEmbedder(TimestepEmbedder):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size
        self.outdim = hidden_size

    def forward(self, s, bs):
        if s.ndim == 1:
            s = s[:, None]
        assert s.ndim == 2
        if s.shape[0] != bs:
            s = s.repeat(bs // s.shape[0], 1)
            assert s.shape[0] == bs
        b, dims = s.shape[0], s.shape[1]
        s = rearrange(s, "b d -> (b d)")
        s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
        s_emb = self.mlp(s_freq)
        s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
        return s_emb

    @property
    def dtype(self):
        return next(self.parameters()).dtype


class OpenSoraCaptionEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(
        self,
        in_channels,
        hidden_size,
        uncond_prob,
        act_layer=nn.GELU(approximate="tanh"),
        token_num=120,
    ):
        super().__init__()
        self.y_proj = Mlp(
            in_features=in_channels,
            hidden_features=hidden_size,
            out_features=hidden_size,
            act_layer=act_layer,
            drop=0,
        )
        self.register_buffer(
            "y_embedding",
            torch.randn(token_num, in_channels) / in_channels**0.5,
        )
        self.uncond_prob = uncond_prob

    def token_drop(self, caption, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
        else:
            drop_ids = force_drop_ids == 1
        caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
        return caption

    def forward(self, caption, train, force_drop_ids=None):
        if train:
            assert caption.shape[2:] == self.y_embedding.shape
        use_dropout = self.uncond_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            caption = self.token_drop(caption, force_drop_ids)
        caption = self.y_proj(caption)
        return caption


class OpenSoraPositionEmbedding2D(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim
        assert dim % 4 == 0, "dim must be divisible by 4"
        half_dim = dim // 2
        inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def _get_sin_cos_emb(self, t: torch.Tensor):
        out = torch.einsum("i,d->id", t, self.inv_freq)
        emb_cos = torch.cos(out)
        emb_sin = torch.sin(out)
        return torch.cat((emb_sin, emb_cos), dim=-1)

    @functools.lru_cache(maxsize=512)
    def _get_cached_emb(
        self,
        device: torch.device,
        dtype: torch.dtype,
        h: int,
        w: int,
        scale: float = 1.0,
        base_size: Optional[int] = None,
    ):
        grid_h = torch.arange(h, device=device) / scale
        grid_w = torch.arange(w, device=device) / scale
        if base_size is not None:
            grid_h *= base_size / h
            grid_w *= base_size / w
        grid_h, grid_w = torch.meshgrid(
            grid_w,
            grid_h,
            indexing="ij",
        )  # here w goes first
        grid_h = grid_h.t().reshape(-1)
        grid_w = grid_w.t().reshape(-1)
        emb_h = self._get_sin_cos_emb(grid_h)
        emb_w = self._get_sin_cos_emb(grid_w)
        return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype)

    def forward(
        self,
        x: torch.Tensor,
        h: int,
        w: int,
        scale: Optional[float] = 1.0,
        base_size: Optional[int] = None,
    ) -> torch.Tensor:
        return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size)


def get_3d_rotary_pos_embed(
    embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    """
    RoPE for video tokens with 3D structure.

    Args:
    embed_dim: (`int`):
        The embedding dimension size, corresponding to hidden_size_head.
    crops_coords (`Tuple[int]`):
        The top-left and bottom-right coordinates of the crop.
    grid_size (`Tuple[int]`):
        The grid size of the spatial positional embedding (height, width).
    temporal_size (`int`):
        The size of the temporal dimension.
    theta (`float`):
        Scaling factor for frequency computation.
    use_real (`bool`):
        If True, return real part and imaginary part separately. Otherwise, return complex numbers.

    Returns:
        `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
    """
    start, stop = crops_coords
    grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
    grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
    grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)

    # Compute dimensions for each axis
    dim_t = embed_dim // 4
    dim_h = embed_dim // 8 * 3
    dim_w = embed_dim // 8 * 3

    # Temporal frequencies
    freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
    grid_t = torch.from_numpy(grid_t).float()
    freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
    freqs_t = freqs_t.repeat_interleave(2, dim=-1)

    # Spatial frequencies for height and width
    freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
    freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
    grid_h = torch.from_numpy(grid_h).float()
    grid_w = torch.from_numpy(grid_w).float()
    freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
    freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
    freqs_h = freqs_h.repeat_interleave(2, dim=-1)
    freqs_w = freqs_w.repeat_interleave(2, dim=-1)

    # Broadcast and concatenate tensors along specified dimension
    def broadcast(tensors, dim=-1):
        num_tensors = len(tensors)
        shape_lens = {len(t.shape) for t in tensors}
        assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
        shape_len = list(shape_lens)[0]
        dim = (dim + shape_len) if dim < 0 else dim
        dims = list(zip(*(list(t.shape) for t in tensors)))
        expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
        assert all(
            [*(len(set(t[1])) <= 2 for t in expandable_dims)]
        ), "invalid dimensions for broadcastable concatenation"
        max_dims = [(t[0], max(t[1])) for t in expandable_dims]
        expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
        expanded_dims.insert(dim, (dim, dims[dim]))
        expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
        tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
        return torch.cat(tensors, dim=dim)

    freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)

    t, h, w, d = freqs.shape
    freqs = freqs.view(t * h * w, d)

    # Generate sine and cosine components
    sin = freqs.sin()
    cos = freqs.cos()

    if use_real:
        return cos, sin
    else:
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis


def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
    use_real: bool = True,
    use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)

        if use_real_unbind_dim == -1:
            # Use for example in Lumina
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
            # Use for example in Stable Audio
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out
    else:
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)