Spaces:
Running
Running
# Adapted from OpenSora | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# OpenSora: https://github.com/hpcaitech/Open-Sora | |
# -------------------------------------------------------- | |
import torch | |
import torch.distributed as dist | |
from einops import rearrange | |
from torch.distributions import LogisticNormal | |
from tqdm import tqdm | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res + torch.zeros(broadcast_shape, device=timesteps.device) | |
def mean_flat(tensor: torch.Tensor, mask=None): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
if mask is None: | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
else: | |
assert tensor.dim() == 5 | |
assert tensor.shape[2] == mask.shape[1] | |
tensor = rearrange(tensor, "b c t h w -> b t (c h w)") | |
denom = mask.sum(dim=1) * tensor.shape[-1] | |
loss = (tensor * mask.unsqueeze(2)).sum(dim=1).sum(dim=1) / denom | |
return loss | |
def timestep_transform( | |
t, | |
model_kwargs, | |
base_resolution=512 * 512, | |
base_num_frames=1, | |
scale=1.0, | |
num_timesteps=1, | |
): | |
t = t / num_timesteps | |
resolution = model_kwargs["height"] * model_kwargs["width"] | |
ratio_space = (resolution / base_resolution).sqrt() | |
# NOTE: currently, we do not take fps into account | |
# NOTE: temporal_reduction is hardcoded, this should be equal to the temporal reduction factor of the vae | |
if model_kwargs["num_frames"][0] == 1: | |
num_frames = torch.ones_like(model_kwargs["num_frames"]) | |
else: | |
num_frames = model_kwargs["num_frames"] // 17 * 5 | |
ratio_time = (num_frames / base_num_frames).sqrt() | |
ratio = ratio_space * ratio_time * scale | |
new_t = ratio * t / (1 + (ratio - 1) * t) | |
new_t = new_t * num_timesteps | |
return new_t | |
class RFlowScheduler: | |
def __init__( | |
self, | |
num_timesteps=1000, | |
num_sampling_steps=10, | |
use_discrete_timesteps=False, | |
sample_method="uniform", | |
loc=0.0, | |
scale=1.0, | |
use_timestep_transform=False, | |
transform_scale=1.0, | |
): | |
self.num_timesteps = num_timesteps | |
self.num_sampling_steps = num_sampling_steps | |
self.use_discrete_timesteps = use_discrete_timesteps | |
# sample method | |
assert sample_method in ["uniform", "logit-normal"] | |
assert ( | |
sample_method == "uniform" or not use_discrete_timesteps | |
), "Only uniform sampling is supported for discrete timesteps" | |
self.sample_method = sample_method | |
if sample_method == "logit-normal": | |
self.distribution = LogisticNormal(torch.tensor([loc]), torch.tensor([scale])) | |
self.sample_t = lambda x: self.distribution.sample((x.shape[0],))[:, 0].to(x.device) | |
# timestep transform | |
self.use_timestep_transform = use_timestep_transform | |
self.transform_scale = transform_scale | |
def training_losses(self, model, x_start, model_kwargs=None, noise=None, mask=None, weights=None, t=None): | |
""" | |
Compute training losses for a single timestep. | |
Arguments format copied from opensora/schedulers/iddpm/gaussian_diffusion.py/training_losses | |
Note: t is int tensor and should be rescaled from [0, num_timesteps-1] to [1,0] | |
""" | |
if t is None: | |
if self.use_discrete_timesteps: | |
t = torch.randint(0, self.num_timesteps, (x_start.shape[0],), device=x_start.device) | |
elif self.sample_method == "uniform": | |
t = torch.rand((x_start.shape[0],), device=x_start.device) * self.num_timesteps | |
elif self.sample_method == "logit-normal": | |
t = self.sample_t(x_start) * self.num_timesteps | |
if self.use_timestep_transform: | |
t = timestep_transform(t, model_kwargs, scale=self.transform_scale, num_timesteps=self.num_timesteps) | |
if model_kwargs is None: | |
model_kwargs = {} | |
if noise is None: | |
noise = torch.randn_like(x_start) | |
assert noise.shape == x_start.shape | |
x_t = self.add_noise(x_start, noise, t) | |
if mask is not None: | |
t0 = torch.zeros_like(t) | |
x_t0 = self.add_noise(x_start, noise, t0) | |
x_t = torch.where(mask[:, None, :, None, None], x_t, x_t0) | |
terms = {} | |
model_output = model(x_t, t, **model_kwargs) | |
velocity_pred = model_output.chunk(2, dim=1)[0] | |
if weights is None: | |
loss = mean_flat((velocity_pred - (x_start - noise)).pow(2), mask=mask) | |
else: | |
weight = _extract_into_tensor(weights, t, x_start.shape) | |
loss = mean_flat(weight * (velocity_pred - (x_start - noise)).pow(2), mask=mask) | |
terms["loss"] = loss | |
return terms | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
""" | |
compatible with diffusers add_noise() | |
""" | |
timepoints = timesteps.float() / self.num_timesteps | |
timepoints = 1 - timepoints # [1,1/1000] | |
# timepoint (bsz) noise: (bsz, 4, frame, w ,h) | |
# expand timepoint to noise shape | |
timepoints = timepoints.unsqueeze(1).unsqueeze(1).unsqueeze(1).unsqueeze(1) | |
timepoints = timepoints.repeat(1, noise.shape[1], noise.shape[2], noise.shape[3], noise.shape[4]) | |
return timepoints * original_samples + (1 - timepoints) * noise | |
class RFLOW: | |
def __init__( | |
self, | |
num_sampling_steps=10, | |
num_timesteps=1000, | |
cfg_scale=4.0, | |
use_discrete_timesteps=False, | |
use_timestep_transform=False, | |
**kwargs, | |
): | |
self.num_sampling_steps = num_sampling_steps | |
self.num_timesteps = num_timesteps | |
self.cfg_scale = cfg_scale | |
self.use_discrete_timesteps = use_discrete_timesteps | |
self.use_timestep_transform = use_timestep_transform | |
self.scheduler = RFlowScheduler( | |
num_timesteps=num_timesteps, | |
num_sampling_steps=num_sampling_steps, | |
use_discrete_timesteps=use_discrete_timesteps, | |
use_timestep_transform=use_timestep_transform, | |
**kwargs, | |
) | |
def sample( | |
self, | |
model, | |
z, | |
model_args, | |
y_null, | |
device, | |
mask=None, | |
guidance_scale=None, | |
progress=True, | |
verbose=False, | |
): | |
# if no specific guidance scale is provided, use the default scale when initializing the scheduler | |
if guidance_scale is None: | |
guidance_scale = self.cfg_scale | |
# text encoding | |
model_args["y"] = torch.cat([model_args["y"], y_null], 0) | |
# prepare timesteps | |
timesteps = [(1.0 - i / self.num_sampling_steps) * self.num_timesteps for i in range(self.num_sampling_steps)] | |
if self.use_discrete_timesteps: | |
timesteps = [int(round(t)) for t in timesteps] | |
timesteps = [torch.tensor([t] * z.shape[0], device=device) for t in timesteps] | |
if self.use_timestep_transform: | |
timesteps = [timestep_transform(t, model_args, num_timesteps=self.num_timesteps) for t in timesteps] | |
if mask is not None: | |
noise_added = torch.zeros_like(mask, dtype=torch.bool) | |
noise_added = noise_added | (mask == 1) | |
progress_wrap = tqdm if progress and dist.get_rank() == 0 else (lambda x: x) | |
dtype = model.x_embedder.proj.weight.dtype | |
all_timesteps = [int(t.to(dtype).item()) for t in timesteps] | |
for i, t in progress_wrap(list(enumerate(timesteps))): | |
# mask for adding noise | |
if mask is not None: | |
mask_t = mask * self.num_timesteps | |
x0 = z.clone() | |
x_noise = self.scheduler.add_noise(x0, torch.randn_like(x0), t) | |
mask_t_upper = mask_t >= t.unsqueeze(1) | |
model_args["x_mask"] = mask_t_upper.repeat(2, 1) | |
mask_add_noise = mask_t_upper & ~noise_added | |
z = torch.where(mask_add_noise[:, None, :, None, None], x_noise, x0) | |
noise_added = mask_t_upper | |
# classifier-free guidance | |
z_in = torch.cat([z, z], 0) | |
t = torch.cat([t, t], 0) | |
# pred = model(z_in, t, **model_args).chunk(2, dim=1)[0] | |
output = model(z_in, t, all_timesteps, **model_args) | |
pred = output.chunk(2, dim=1)[0] | |
pred_cond, pred_uncond = pred.chunk(2, dim=0) | |
v_pred = pred_uncond + guidance_scale * (pred_cond - pred_uncond) | |
# update z | |
dt = timesteps[i] - timesteps[i + 1] if i < len(timesteps) - 1 else timesteps[i] | |
dt = dt / self.num_timesteps | |
z = z + v_pred * dt[:, None, None, None, None] | |
if mask is not None: | |
z = torch.where(mask_t_upper[:, None, :, None, None], z, x0) | |
return z | |
def training_losses(self, model, x_start, model_kwargs=None, noise=None, mask=None, weights=None, t=None): | |
return self.scheduler.training_losses(model, x_start, model_kwargs, noise, mask, weights, t) | |