Spaces:
Running
Running
# Adapted from CogVideo | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# CogVideo: https://github.com/THUDM/CogVideo | |
# diffusers: https://github.com/huggingface/diffusers | |
# -------------------------------------------------------- | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
from diffusers.models.activations import get_activation | |
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution | |
from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils.accelerate_utils import apply_forward_hook | |
from videosys.utils.logging import logger | |
from ..modules.downsampling import CogVideoXDownsample3D | |
from ..modules.upsampling import CogVideoXUpsample3D | |
class CogVideoXSafeConv3d(nn.Conv3d): | |
r""" | |
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. | |
""" | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3 | |
# Set to 2GB, suitable for CuDNN | |
if memory_count > 2: | |
kernel_size = self.kernel_size[0] | |
part_num = int(memory_count / 2) + 1 | |
input_chunks = torch.chunk(input, part_num, dim=2) | |
if kernel_size > 1: | |
input_chunks = [input_chunks[0]] + [ | |
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) | |
for i in range(1, len(input_chunks)) | |
] | |
output_chunks = [] | |
for input_chunk in input_chunks: | |
output_chunks.append(super().forward(input_chunk)) | |
output = torch.cat(output_chunks, dim=2) | |
return output | |
else: | |
return super().forward(input) | |
class CogVideoXCausalConv3d(nn.Module): | |
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. | |
Args: | |
in_channels (`int`): Number of channels in the input tensor. | |
out_channels (`int`): Number of output channels produced by the convolution. | |
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. | |
stride (`int`, defaults to `1`): Stride of the convolution. | |
dilation (`int`, defaults to `1`): Dilation rate of the convolution. | |
pad_mode (`str`, defaults to `"constant"`): Padding mode. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int, int]], | |
stride: int = 1, | |
dilation: int = 1, | |
pad_mode: str = "constant", | |
): | |
super().__init__() | |
if isinstance(kernel_size, int): | |
kernel_size = (kernel_size,) * 3 | |
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
self.pad_mode = pad_mode | |
time_pad = dilation * (time_kernel_size - 1) + (1 - stride) | |
height_pad = height_kernel_size // 2 | |
width_pad = width_kernel_size // 2 | |
self.height_pad = height_pad | |
self.width_pad = width_pad | |
self.time_pad = time_pad | |
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) | |
self.temporal_dim = 2 | |
self.time_kernel_size = time_kernel_size | |
stride = (stride, 1, 1) | |
dilation = (dilation, 1, 1) | |
self.conv = CogVideoXSafeConv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
) | |
self.conv_cache = None | |
def fake_context_parallel_forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
kernel_size = self.time_kernel_size | |
if kernel_size > 1: | |
cached_inputs = [self.conv_cache] if self.conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) | |
inputs = torch.cat(cached_inputs + [inputs], dim=2) | |
return inputs | |
def _clear_fake_context_parallel_cache(self): | |
del self.conv_cache | |
self.conv_cache = None | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
inputs = self.fake_context_parallel_forward(inputs) | |
self._clear_fake_context_parallel_cache() | |
# Note: we could move these to the cpu for a lower maximum memory usage but its only a few | |
# hundred megabytes and so let's not do it for now | |
self.conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() | |
padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) | |
inputs = F.pad(inputs, padding_2d, mode="constant", value=0) | |
output = self.conv(inputs) | |
return output | |
class CogVideoXSpatialNorm3D(nn.Module): | |
r""" | |
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific | |
to 3D-video like data. | |
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. | |
Args: | |
f_channels (`int`): | |
The number of channels for input to group normalization layer, and output of the spatial norm layer. | |
zq_channels (`int`): | |
The number of channels for the quantized vector as described in the paper. | |
groups (`int`): | |
Number of groups to separate the channels into for group normalization. | |
""" | |
def __init__( | |
self, | |
f_channels: int, | |
zq_channels: int, | |
groups: int = 32, | |
): | |
super().__init__() | |
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) | |
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: | |
if f.shape[2] > 1 and f.shape[2] % 2 == 1: | |
f_first, f_rest = f[:, :, :1], f[:, :, 1:] | |
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] | |
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] | |
z_first = F.interpolate(z_first, size=f_first_size) | |
z_rest = F.interpolate(z_rest, size=f_rest_size) | |
zq = torch.cat([z_first, z_rest], dim=2) | |
else: | |
zq = F.interpolate(zq, size=f.shape[-3:]) | |
norm_f = self.norm_layer(f) | |
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) | |
return new_f | |
class CogVideoXResnetBlock3D(nn.Module): | |
r""" | |
A 3D ResNet block used in the CogVideoX model. | |
Args: | |
in_channels (`int`): | |
Number of input channels. | |
out_channels (`int`, *optional*): | |
Number of output channels. If None, defaults to `in_channels`. | |
dropout (`float`, defaults to `0.0`): | |
Dropout rate. | |
temb_channels (`int`, defaults to `512`): | |
Number of time embedding channels. | |
groups (`int`, defaults to `32`): | |
Number of groups to separate the channels into for group normalization. | |
eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
non_linearity (`str`, defaults to `"swish"`): | |
Activation function to use. | |
conv_shortcut (bool, defaults to `False`): | |
Whether or not to use a convolution shortcut. | |
spatial_norm_dim (`int`, *optional*): | |
The dimension to use for spatial norm if it is to be used instead of group norm. | |
pad_mode (str, defaults to `"first"`): | |
Padding mode. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
dropout: float = 0.0, | |
temb_channels: int = 512, | |
groups: int = 32, | |
eps: float = 1e-6, | |
non_linearity: str = "swish", | |
conv_shortcut: bool = False, | |
spatial_norm_dim: Optional[int] = None, | |
pad_mode: str = "first", | |
): | |
super().__init__() | |
out_channels = out_channels or in_channels | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.nonlinearity = get_activation(non_linearity) | |
self.use_conv_shortcut = conv_shortcut | |
if spatial_norm_dim is None: | |
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) | |
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) | |
else: | |
self.norm1 = CogVideoXSpatialNorm3D( | |
f_channels=in_channels, | |
zq_channels=spatial_norm_dim, | |
groups=groups, | |
) | |
self.norm2 = CogVideoXSpatialNorm3D( | |
f_channels=out_channels, | |
zq_channels=spatial_norm_dim, | |
groups=groups, | |
) | |
self.conv1 = CogVideoXCausalConv3d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
if temb_channels > 0: | |
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = CogVideoXCausalConv3d( | |
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = CogVideoXCausalConv3d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
else: | |
self.conv_shortcut = CogVideoXSafeConv3d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward( | |
self, | |
inputs: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
zq: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
hidden_states = inputs | |
if zq is not None: | |
hidden_states = self.norm1(hidden_states, zq) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] | |
if zq is not None: | |
hidden_states = self.norm2(hidden_states, zq) | |
else: | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.in_channels != self.out_channels: | |
inputs = self.conv_shortcut(inputs) | |
hidden_states = hidden_states + inputs | |
return hidden_states | |
class CogVideoXDownBlock3D(nn.Module): | |
r""" | |
A downsampling block used in the CogVideoX model. | |
Args: | |
in_channels (`int`): | |
Number of input channels. | |
out_channels (`int`, *optional*): | |
Number of output channels. If None, defaults to `in_channels`. | |
temb_channels (`int`, defaults to `512`): | |
Number of time embedding channels. | |
num_layers (`int`, defaults to `1`): | |
Number of resnet layers. | |
dropout (`float`, defaults to `0.0`): | |
Dropout rate. | |
resnet_eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
resnet_act_fn (`str`, defaults to `"swish"`): | |
Activation function to use. | |
resnet_groups (`int`, defaults to `32`): | |
Number of groups to separate the channels into for group normalization. | |
add_downsample (`bool`, defaults to `True`): | |
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. | |
compress_time (`bool`, defaults to `False`): | |
Whether or not to downsample across temporal dimension. | |
pad_mode (str, defaults to `"first"`): | |
Padding mode. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
add_downsample: bool = True, | |
downsample_padding: int = 0, | |
compress_time: bool = False, | |
pad_mode: str = "first", | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channel = in_channels if i == 0 else out_channels | |
resnets.append( | |
CogVideoXResnetBlock3D( | |
in_channels=in_channel, | |
out_channels=out_channels, | |
dropout=dropout, | |
temb_channels=temb_channels, | |
groups=resnet_groups, | |
eps=resnet_eps, | |
non_linearity=resnet_act_fn, | |
pad_mode=pad_mode, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.downsamplers = None | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
CogVideoXDownsample3D( | |
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time | |
) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
zq: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def create_forward(*inputs): | |
return module(*inputs) | |
return create_forward | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, zq | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, zq) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
return hidden_states | |
class CogVideoXMidBlock3D(nn.Module): | |
r""" | |
A middle block used in the CogVideoX model. | |
Args: | |
in_channels (`int`): | |
Number of input channels. | |
temb_channels (`int`, defaults to `512`): | |
Number of time embedding channels. | |
dropout (`float`, defaults to `0.0`): | |
Dropout rate. | |
num_layers (`int`, defaults to `1`): | |
Number of resnet layers. | |
resnet_eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
resnet_act_fn (`str`, defaults to `"swish"`): | |
Activation function to use. | |
resnet_groups (`int`, defaults to `32`): | |
Number of groups to separate the channels into for group normalization. | |
spatial_norm_dim (`int`, *optional*): | |
The dimension to use for spatial norm if it is to be used instead of group norm. | |
pad_mode (str, defaults to `"first"`): | |
Padding mode. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
spatial_norm_dim: Optional[int] = None, | |
pad_mode: str = "first", | |
): | |
super().__init__() | |
resnets = [] | |
for _ in range(num_layers): | |
resnets.append( | |
CogVideoXResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
dropout=dropout, | |
temb_channels=temb_channels, | |
groups=resnet_groups, | |
eps=resnet_eps, | |
spatial_norm_dim=spatial_norm_dim, | |
non_linearity=resnet_act_fn, | |
pad_mode=pad_mode, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
zq: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def create_forward(*inputs): | |
return module(*inputs) | |
return create_forward | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, zq | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, zq) | |
return hidden_states | |
class CogVideoXUpBlock3D(nn.Module): | |
r""" | |
An upsampling block used in the CogVideoX model. | |
Args: | |
in_channels (`int`): | |
Number of input channels. | |
out_channels (`int`, *optional*): | |
Number of output channels. If None, defaults to `in_channels`. | |
temb_channels (`int`, defaults to `512`): | |
Number of time embedding channels. | |
dropout (`float`, defaults to `0.0`): | |
Dropout rate. | |
num_layers (`int`, defaults to `1`): | |
Number of resnet layers. | |
resnet_eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
resnet_act_fn (`str`, defaults to `"swish"`): | |
Activation function to use. | |
resnet_groups (`int`, defaults to `32`): | |
Number of groups to separate the channels into for group normalization. | |
spatial_norm_dim (`int`, defaults to `16`): | |
The dimension to use for spatial norm if it is to be used instead of group norm. | |
add_upsample (`bool`, defaults to `True`): | |
Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. | |
compress_time (`bool`, defaults to `False`): | |
Whether or not to downsample across temporal dimension. | |
pad_mode (str, defaults to `"first"`): | |
Padding mode. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
spatial_norm_dim: int = 16, | |
add_upsample: bool = True, | |
upsample_padding: int = 1, | |
compress_time: bool = False, | |
pad_mode: str = "first", | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channel = in_channels if i == 0 else out_channels | |
resnets.append( | |
CogVideoXResnetBlock3D( | |
in_channels=in_channel, | |
out_channels=out_channels, | |
dropout=dropout, | |
temb_channels=temb_channels, | |
groups=resnet_groups, | |
eps=resnet_eps, | |
non_linearity=resnet_act_fn, | |
spatial_norm_dim=spatial_norm_dim, | |
pad_mode=pad_mode, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.upsamplers = None | |
if add_upsample: | |
self.upsamplers = nn.ModuleList( | |
[CogVideoXUpsample3D(out_channels, out_channels, padding=upsample_padding, compress_time=compress_time)] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
zq: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
r"""Forward method of the `CogVideoXUpBlock3D` class.""" | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def create_forward(*inputs): | |
return module(*inputs) | |
return create_forward | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb, zq | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb, zq) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
return hidden_states | |
class CogVideoXEncoder3D(nn.Module): | |
r""" | |
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 16, | |
down_block_types: Tuple[str, ...] = ( | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), | |
layers_per_block: int = 3, | |
act_fn: str = "silu", | |
norm_eps: float = 1e-6, | |
norm_num_groups: int = 32, | |
dropout: float = 0.0, | |
pad_mode: str = "first", | |
temporal_compression_ratio: float = 4, | |
): | |
super().__init__() | |
# log2 of temporal_compress_times | |
temporal_compress_level = int(np.log2(temporal_compression_ratio)) | |
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) | |
self.down_blocks = nn.ModuleList([]) | |
# down blocks | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
compress_time = i < temporal_compress_level | |
if down_block_type == "CogVideoXDownBlock3D": | |
down_block = CogVideoXDownBlock3D( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=0, | |
dropout=dropout, | |
num_layers=layers_per_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
add_downsample=not is_final_block, | |
compress_time=compress_time, | |
) | |
else: | |
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") | |
self.down_blocks.append(down_block) | |
# mid block | |
self.mid_block = CogVideoXMidBlock3D( | |
in_channels=block_out_channels[-1], | |
temb_channels=0, | |
dropout=dropout, | |
num_layers=2, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
pad_mode=pad_mode, | |
) | |
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = CogVideoXCausalConv3d( | |
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: | |
r"""The forward method of the `CogVideoXEncoder3D` class.""" | |
hidden_states = self.conv_in(sample) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# 1. Down | |
for down_block in self.down_blocks: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(down_block), hidden_states, temb, None | |
) | |
# 2. Mid | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), hidden_states, temb, None | |
) | |
else: | |
# 1. Down | |
for down_block in self.down_blocks: | |
hidden_states = down_block(hidden_states, temb, None) | |
# 2. Mid | |
hidden_states = self.mid_block(hidden_states, temb, None) | |
# 3. Post-process | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class CogVideoXDecoder3D(nn.Module): | |
r""" | |
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output | |
sample. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 16, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), | |
layers_per_block: int = 3, | |
act_fn: str = "silu", | |
norm_eps: float = 1e-6, | |
norm_num_groups: int = 32, | |
dropout: float = 0.0, | |
pad_mode: str = "first", | |
temporal_compression_ratio: float = 4, | |
): | |
super().__init__() | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
self.conv_in = CogVideoXCausalConv3d( | |
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode | |
) | |
# mid block | |
self.mid_block = CogVideoXMidBlock3D( | |
in_channels=reversed_block_out_channels[0], | |
temb_channels=0, | |
num_layers=2, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
spatial_norm_dim=in_channels, | |
pad_mode=pad_mode, | |
) | |
# up blocks | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = reversed_block_out_channels[0] | |
temporal_compress_level = int(np.log2(temporal_compression_ratio)) | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
compress_time = i < temporal_compress_level | |
if up_block_type == "CogVideoXUpBlock3D": | |
up_block = CogVideoXUpBlock3D( | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
temb_channels=0, | |
dropout=dropout, | |
num_layers=layers_per_block + 1, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
spatial_norm_dim=in_channels, | |
add_upsample=not is_final_block, | |
compress_time=compress_time, | |
pad_mode=pad_mode, | |
) | |
prev_output_channel = output_channel | |
else: | |
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") | |
self.up_blocks.append(up_block) | |
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) | |
self.conv_act = nn.SiLU() | |
self.conv_out = CogVideoXCausalConv3d( | |
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor: | |
r"""The forward method of the `CogVideoXDecoder3D` class.""" | |
hidden_states = self.conv_in(sample) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# 1. Mid | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), hidden_states, temb, sample | |
) | |
# 2. Up | |
for up_block in self.up_blocks: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), hidden_states, temb, sample | |
) | |
else: | |
# 1. Mid | |
hidden_states = self.mid_block(hidden_states, temb, sample) | |
# 2. Up | |
for up_block in self.up_blocks: | |
hidden_states = up_block(hidden_states, temb, sample) | |
# 3. Post-process | |
hidden_states = self.norm_out(hidden_states, sample) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
r""" | |
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in | |
[CogVideoX](https://github.com/THUDM/CogVideo). | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
scaling_factor (`float`, *optional*, defaults to `1.15258426`): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
force_upcast (`bool`, *optional*, default to `True`): | |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["CogVideoXResnetBlock3D"] | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ( | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
"CogVideoXDownBlock3D", | |
), | |
up_block_types: Tuple[str] = ( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels: Tuple[int] = (128, 256, 256, 512), | |
latent_channels: int = 16, | |
layers_per_block: int = 3, | |
act_fn: str = "silu", | |
norm_eps: float = 1e-6, | |
norm_num_groups: int = 32, | |
temporal_compression_ratio: float = 4, | |
sample_height: int = 480, | |
sample_width: int = 720, | |
scaling_factor: float = 1.15258426, | |
shift_factor: Optional[float] = None, | |
latents_mean: Optional[Tuple[float]] = None, | |
latents_std: Optional[Tuple[float]] = None, | |
force_upcast: float = True, | |
use_quant_conv: bool = False, | |
use_post_quant_conv: bool = False, | |
): | |
super().__init__() | |
self.encoder = CogVideoXEncoder3D( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_eps=norm_eps, | |
norm_num_groups=norm_num_groups, | |
temporal_compression_ratio=temporal_compression_ratio, | |
) | |
self.decoder = CogVideoXDecoder3D( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_eps=norm_eps, | |
norm_num_groups=norm_num_groups, | |
temporal_compression_ratio=temporal_compression_ratio, | |
) | |
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None | |
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None | |
self.use_slicing = False | |
self.use_tiling = False | |
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not | |
# recommended because the temporal parts of the VAE, here, are tricky to understand. | |
# If you decode X latent frames together, the number of output frames is: | |
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames | |
# | |
# Example with num_latent_frames_batch_size = 2: | |
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together | |
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
# => 6 * 8 = 48 frames | |
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together | |
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + | |
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
# => 1 * 9 + 5 * 8 = 49 frames | |
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that | |
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different | |
# number of temporal frames. | |
self.num_latent_frames_batch_size = 2 | |
# We make the minimum height and width of sample for tiling half that of the generally supported | |
self.tile_sample_min_height = sample_height // 2 | |
self.tile_sample_min_width = sample_width // 2 | |
self.tile_latent_min_height = int( | |
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
) | |
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for | |
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX | |
# and so the tiling implementation has only been tested on those specific resolutions. | |
self.tile_overlap_factor_height = 1 / 6 | |
self.tile_overlap_factor_width = 1 / 5 | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): | |
module.gradient_checkpointing = value | |
def _clear_fake_context_parallel_cache(self): | |
for name, module in self.named_modules(): | |
if isinstance(module, CogVideoXCausalConv3d): | |
logger.debug(f"Clearing fake Context Parallel cache for layer: {name}") | |
module._clear_fake_context_parallel_cache() | |
def enable_tiling( | |
self, | |
tile_sample_min_height: Optional[int] = None, | |
tile_sample_min_width: Optional[int] = None, | |
tile_overlap_factor_height: Optional[float] = None, | |
tile_overlap_factor_width: Optional[float] = None, | |
) -> None: | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
Args: | |
tile_sample_min_height (`int`, *optional*): | |
The minimum height required for a sample to be separated into tiles across the height dimension. | |
tile_sample_min_width (`int`, *optional*): | |
The minimum width required for a sample to be separated into tiles across the width dimension. | |
tile_overlap_factor_height (`int`, *optional*): | |
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher | |
value might cause more tiles to be processed leading to slow down of the decoding process. | |
tile_overlap_factor_width (`int`, *optional*): | |
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there | |
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher | |
value might cause more tiles to be processed leading to slow down of the decoding process. | |
""" | |
self.use_tiling = True | |
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
self.tile_latent_min_height = int( | |
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
) | |
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height | |
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width | |
def disable_tiling(self) -> None: | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_tiling = False | |
def enable_slicing(self) -> None: | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self) -> None: | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.Tensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded images. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
h = self.encoder(x) | |
if self.quant_conv is not None: | |
h = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(h) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
batch_size, num_channels, num_frames, height, width = z.shape | |
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): | |
return self.tiled_decode(z, return_dict=return_dict) | |
frame_batch_size = self.num_latent_frames_batch_size | |
dec = [] | |
for i in range(num_frames // frame_batch_size): | |
remaining_frames = num_frames % frame_batch_size | |
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) | |
end_frame = frame_batch_size * (i + 1) + remaining_frames | |
z_intermediate = z[:, :, start_frame:end_frame] | |
if self.post_quant_conv is not None: | |
z_intermediate = self.post_quant_conv(z_intermediate) | |
z_intermediate = self.decoder(z_intermediate) | |
dec.append(z_intermediate) | |
self._clear_fake_context_parallel_cache() | |
dec = torch.cat(dec, dim=2) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
y / blend_extent | |
) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
x / blend_extent | |
) | |
return b | |
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images using a tiled decoder. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
# Rough memory assessment: | |
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. | |
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. | |
# - Assume fp16 (2 bytes per value). | |
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB | |
# | |
# Memory assessment when using tiling: | |
# - Assume everything as above but now HxW is 240x360 by tiling in half | |
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB | |
batch_size, num_channels, num_frames, height, width = z.shape | |
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) | |
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) | |
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) | |
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) | |
row_limit_height = self.tile_sample_min_height - blend_extent_height | |
row_limit_width = self.tile_sample_min_width - blend_extent_width | |
frame_batch_size = self.num_latent_frames_batch_size | |
# Split z into overlapping tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, overlap_height): | |
row = [] | |
for j in range(0, width, overlap_width): | |
time = [] | |
for k in range(num_frames // frame_batch_size): | |
remaining_frames = num_frames % frame_batch_size | |
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) | |
end_frame = frame_batch_size * (k + 1) + remaining_frames | |
tile = z[ | |
:, | |
:, | |
start_frame:end_frame, | |
i : i + self.tile_latent_min_height, | |
j : j + self.tile_latent_min_width, | |
] | |
if self.post_quant_conv is not None: | |
tile = self.post_quant_conv(tile) | |
tile = self.decoder(tile) | |
time.append(tile) | |
self._clear_fake_context_parallel_cache() | |
row.append(torch.cat(time, dim=2)) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent_width) | |
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) | |
result_rows.append(torch.cat(result_row, dim=4)) | |
dec = torch.cat(result_rows, dim=3) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[torch.Tensor, torch.Tensor]: | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
if not return_dict: | |
return (dec,) | |
return dec | |