# Adapted from Open-Sora-Plan # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan # -------------------------------------------------------- import glob import os from typing import Optional, Tuple, Union import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from diffusers import ConfigMixin, ModelMixin from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import logging from einops import rearrange from torch import nn logging.set_verbosity_error() def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) def tensor_to_video(x): x = x.detach().cpu() x = torch.clamp(x, -1, 1) x = (x + 1) / 2 x = x.permute(1, 0, 2, 3).float().numpy() # c t h w -> x = (255 * x).astype(np.uint8) return x def nonlinearity(x): return x * torch.sigmoid(x) class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self): x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3], ) def nll(self, sample, dims=[1, 2, 3]): if self.deterministic: return torch.Tensor([0.0]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean def resolve_str_to_obj(str_val, append=True): return globals()[str_val] class VideoBaseAE_PL(ModelMixin, ConfigMixin): config_name = "config.json" def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def encode(self, x: torch.Tensor, *args, **kwargs): pass def decode(self, encoding: torch.Tensor, *args, **kwargs): pass @property def num_training_steps(self) -> int: """Total training steps inferred from datamodule and devices.""" if self.trainer.max_steps: return self.trainer.max_steps limit_batches = self.trainer.limit_train_batches batches = len(self.train_dataloader()) batches = min(batches, limit_batches) if isinstance(limit_batches, int) else int(limit_batches * batches) num_devices = max(1, self.trainer.num_gpus, self.trainer.num_processes) if self.trainer.tpu_cores: num_devices = max(num_devices, self.trainer.tpu_cores) effective_accum = self.trainer.accumulate_grad_batches * num_devices return (batches // effective_accum) * self.trainer.max_epochs @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): ckpt_files = glob.glob(os.path.join(pretrained_model_name_or_path, "*.ckpt")) if ckpt_files: # Adapt to PyTorch Lightning last_ckpt_file = ckpt_files[-1] config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) model = cls.from_config(config_file) print("init from {}".format(last_ckpt_file)) model.init_from_ckpt(last_ckpt_file) return model else: return super().from_pretrained(pretrained_model_name_or_path, **kwargs) class Encoder(nn.Module): def __init__( self, z_channels: int, hidden_size: int, hidden_size_mult: Tuple[int] = (1, 2, 4, 4), attn_resolutions: Tuple[int] = (16,), conv_in: str = "Conv2d", conv_out: str = "CasualConv3d", attention: str = "AttnBlock", resnet_blocks: Tuple[str] = ( "ResnetBlock2D", "ResnetBlock2D", "ResnetBlock2D", "ResnetBlock3D", ), spatial_downsample: Tuple[str] = ( "Downsample", "Downsample", "Downsample", "", ), temporal_downsample: Tuple[str] = ("", "", "TimeDownsampleRes2x", ""), mid_resnet: str = "ResnetBlock3D", dropout: float = 0.0, resolution: int = 256, num_res_blocks: int = 2, double_z: bool = True, ) -> None: super().__init__() assert len(resnet_blocks) == len(hidden_size_mult), print(hidden_size_mult, resnet_blocks) # ---- Config ---- self.num_resolutions = len(hidden_size_mult) self.resolution = resolution self.num_res_blocks = num_res_blocks # ---- In ---- self.conv_in = resolve_str_to_obj(conv_in)(3, hidden_size, kernel_size=3, stride=1, padding=1) # ---- Downsample ---- curr_res = resolution in_ch_mult = (1,) + tuple(hidden_size_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = hidden_size * in_ch_mult[i_level] block_out = hidden_size * hidden_size_mult[i_level] for i_block in range(self.num_res_blocks): block.append( resolve_str_to_obj(resnet_blocks[i_level])( in_channels=block_in, out_channels=block_out, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(resolve_str_to_obj(attention)(block_in)) down = nn.Module() down.block = block down.attn = attn if spatial_downsample[i_level]: down.downsample = resolve_str_to_obj(spatial_downsample[i_level])(block_in, block_in) curr_res = curr_res // 2 if temporal_downsample[i_level]: down.time_downsample = resolve_str_to_obj(temporal_downsample[i_level])(block_in, block_in) self.down.append(down) # ---- Mid ---- self.mid = nn.Module() self.mid.block_1 = resolve_str_to_obj(mid_resnet)( in_channels=block_in, out_channels=block_in, dropout=dropout, ) self.mid.attn_1 = resolve_str_to_obj(attention)(block_in) self.mid.block_2 = resolve_str_to_obj(mid_resnet)( in_channels=block_in, out_channels=block_in, dropout=dropout, ) # ---- Out ---- self.norm_out = Normalize(block_in) self.conv_out = resolve_str_to_obj(conv_out)( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, x): hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if hasattr(self.down[i_level], "downsample"): hs.append(self.down[i_level].downsample(hs[-1])) if hasattr(self.down[i_level], "time_downsample"): hs_down = self.down[i_level].time_downsample(hs[-1]) hs.append(hs_down) h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, z_channels: int, hidden_size: int, hidden_size_mult: Tuple[int] = (1, 2, 4, 4), attn_resolutions: Tuple[int] = (16,), conv_in: str = "Conv2d", conv_out: str = "CasualConv3d", attention: str = "AttnBlock", resnet_blocks: Tuple[str] = ( "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", ), spatial_upsample: Tuple[str] = ( "", "SpatialUpsample2x", "SpatialUpsample2x", "SpatialUpsample2x", ), temporal_upsample: Tuple[str] = ("", "", "", "TimeUpsampleRes2x"), mid_resnet: str = "ResnetBlock3D", dropout: float = 0.0, resolution: int = 256, num_res_blocks: int = 2, ): super().__init__() # ---- Config ---- self.num_resolutions = len(hidden_size_mult) self.resolution = resolution self.num_res_blocks = num_res_blocks # ---- In ---- block_in = hidden_size * hidden_size_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.conv_in = resolve_str_to_obj(conv_in)(z_channels, block_in, kernel_size=3, padding=1) # ---- Mid ---- self.mid = nn.Module() self.mid.block_1 = resolve_str_to_obj(mid_resnet)( in_channels=block_in, out_channels=block_in, dropout=dropout, ) self.mid.attn_1 = resolve_str_to_obj(attention)(block_in) self.mid.block_2 = resolve_str_to_obj(mid_resnet)( in_channels=block_in, out_channels=block_in, dropout=dropout, ) # ---- Upsample ---- self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = hidden_size * hidden_size_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( resolve_str_to_obj(resnet_blocks[i_level])( in_channels=block_in, out_channels=block_out, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(resolve_str_to_obj(attention)(block_in)) up = nn.Module() up.block = block up.attn = attn if spatial_upsample[i_level]: up.upsample = resolve_str_to_obj(spatial_upsample[i_level])(block_in, block_in) curr_res = curr_res * 2 if temporal_upsample[i_level]: up.time_upsample = resolve_str_to_obj(temporal_upsample[i_level])(block_in, block_in) self.up.insert(0, up) # ---- Out ---- self.norm_out = Normalize(block_in) self.conv_out = resolve_str_to_obj(conv_out)(block_in, 3, kernel_size=3, padding=1) def forward(self, z): h = self.conv_in(z) h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if hasattr(self.up[i_level], "upsample"): h = self.up[i_level].upsample(h) if hasattr(self.up[i_level], "time_upsample"): h = self.up[i_level].time_upsample(h) h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class CausalVAEModel(VideoBaseAE_PL): @register_to_config def __init__( self, lr: float = 1e-5, hidden_size: int = 128, z_channels: int = 4, hidden_size_mult: Tuple[int] = (1, 2, 4, 4), attn_resolutions: Tuple[int] = [], dropout: float = 0.0, resolution: int = 256, double_z: bool = True, embed_dim: int = 4, num_res_blocks: int = 2, loss_type: str = "opensora.models.ae.videobase.losses.LPIPSWithDiscriminator", loss_params: dict = { "kl_weight": 0.000001, "logvar_init": 0.0, "disc_start": 2001, "disc_weight": 0.5, }, q_conv: str = "CausalConv3d", encoder_conv_in: str = "CausalConv3d", encoder_conv_out: str = "CausalConv3d", encoder_attention: str = "AttnBlock3D", encoder_resnet_blocks: Tuple[str] = ( "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", ), encoder_spatial_downsample: Tuple[str] = ( "SpatialDownsample2x", "SpatialDownsample2x", "SpatialDownsample2x", "", ), encoder_temporal_downsample: Tuple[str] = ( "", "TimeDownsample2x", "TimeDownsample2x", "", ), encoder_mid_resnet: str = "ResnetBlock3D", decoder_conv_in: str = "CausalConv3d", decoder_conv_out: str = "CausalConv3d", decoder_attention: str = "AttnBlock3D", decoder_resnet_blocks: Tuple[str] = ( "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", "ResnetBlock3D", ), decoder_spatial_upsample: Tuple[str] = ( "", "SpatialUpsample2x", "SpatialUpsample2x", "SpatialUpsample2x", ), decoder_temporal_upsample: Tuple[str] = ("", "", "TimeUpsample2x", "TimeUpsample2x"), decoder_mid_resnet: str = "ResnetBlock3D", ) -> None: super().__init__() self.tile_sample_min_size = 256 self.tile_sample_min_size_t = 65 self.tile_latent_min_size = int(self.tile_sample_min_size / (2 ** (len(hidden_size_mult) - 1))) t_down_ratio = [i for i in encoder_temporal_downsample if len(i) > 0] self.tile_latent_min_size_t = int((self.tile_sample_min_size_t - 1) / (2 ** len(t_down_ratio))) + 1 self.tile_overlap_factor = 0.25 self.use_tiling = False self.learning_rate = lr self.lr_g_factor = 1.0 self.encoder = Encoder( z_channels=z_channels, hidden_size=hidden_size, hidden_size_mult=hidden_size_mult, attn_resolutions=attn_resolutions, conv_in=encoder_conv_in, conv_out=encoder_conv_out, attention=encoder_attention, resnet_blocks=encoder_resnet_blocks, spatial_downsample=encoder_spatial_downsample, temporal_downsample=encoder_temporal_downsample, mid_resnet=encoder_mid_resnet, dropout=dropout, resolution=resolution, num_res_blocks=num_res_blocks, double_z=double_z, ) self.decoder = Decoder( z_channels=z_channels, hidden_size=hidden_size, hidden_size_mult=hidden_size_mult, attn_resolutions=attn_resolutions, conv_in=decoder_conv_in, conv_out=decoder_conv_out, attention=decoder_attention, resnet_blocks=decoder_resnet_blocks, spatial_upsample=decoder_spatial_upsample, temporal_upsample=decoder_temporal_upsample, mid_resnet=decoder_mid_resnet, dropout=dropout, resolution=resolution, num_res_blocks=num_res_blocks, ) quant_conv_cls = resolve_str_to_obj(q_conv) self.quant_conv = quant_conv_cls(2 * z_channels, 2 * embed_dim, 1) self.post_quant_conv = quant_conv_cls(embed_dim, z_channels, 1) def encode(self, x): if self.use_tiling and ( x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size or x.shape[-3] > self.tile_sample_min_size_t ): return self.tiled_encode(x) h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): if self.use_tiling and ( z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size or z.shape[-3] > self.tile_latent_min_size_t ): return self.tiled_decode(z) z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.to(memory_format=torch.contiguous_format).float() return x def training_step(self, batch, batch_idx): if hasattr(self.loss, "discriminator"): return self._training_step_gan(batch, batch_idx=batch_idx) else: return self._training_step(batch, batch_idx=batch_idx) def _training_step(self, batch, batch_idx): inputs = self.get_input(batch, "video") reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss( inputs, reconstructions, posterior, split="train", ) self.log( "aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, ) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss def _training_step_gan(self, batch, batch_idx): inputs = self.get_input(batch, "video") reconstructions, posterior = self(inputs) opt1, opt2 = self.optimizers() # ---- AE Loss ---- aeloss, log_dict_ae = self.loss( inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="train", ) self.log( "aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, ) opt1.zero_grad() self.manual_backward(aeloss) self.clip_gradients(opt1, gradient_clip_val=1, gradient_clip_algorithm="norm") opt1.step() # ---- GAN Loss ---- discloss, log_dict_disc = self.loss( inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="train", ) self.log( "discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True, ) opt2.zero_grad() self.manual_backward(discloss) self.clip_gradients(opt2, gradient_clip_val=1, gradient_clip_algorithm="norm") opt2.step() self.log_dict( {**log_dict_ae, **log_dict_disc}, prog_bar=False, logger=True, on_step=True, on_epoch=False, ) def configure_optimizers(self): from itertools import chain lr = self.learning_rate modules_to_train = [ self.encoder.named_parameters(), self.decoder.named_parameters(), self.post_quant_conv.named_parameters(), self.quant_conv.named_parameters(), ] params_with_time = [] params_without_time = [] for name, param in chain(*modules_to_train): if "time" in name: params_with_time.append(param) else: params_without_time.append(param) optimizers = [] opt_ae = torch.optim.Adam( [ {"params": params_with_time, "lr": lr}, {"params": params_without_time, "lr": lr}, ], lr=lr, betas=(0.5, 0.9), ) optimizers.append(opt_ae) if hasattr(self.loss, "discriminator"): opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) optimizers.append(opt_disc) return optimizers, [] def get_last_layer(self): if hasattr(self.decoder.conv_out, "conv"): return self.decoder.conv_out.conv.weight else: return self.decoder.conv_out.weight def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_encode(self, x): t = x.shape[2] t_chunk_idx = [i for i in range(0, t, self.tile_sample_min_size_t - 1)] if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0: t_chunk_start_end = [[0, t]] else: t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i + 1] + 1] for i in range(len(t_chunk_idx) - 1)] if t_chunk_start_end[-1][-1] > t: t_chunk_start_end[-1][-1] = t elif t_chunk_start_end[-1][-1] < t: last_start_end = [t_chunk_idx[-1], t] t_chunk_start_end.append(last_start_end) moments = [] for idx, (start, end) in enumerate(t_chunk_start_end): chunk_x = x[:, :, start:end] if idx != 0: moment = self.tiled_encode2d(chunk_x, return_moments=True)[:, :, 1:] else: moment = self.tiled_encode2d(chunk_x, return_moments=True) moments.append(moment) moments = torch.cat(moments, dim=2) posterior = DiagonalGaussianDistribution(moments) return posterior def tiled_decode(self, x): t = x.shape[2] t_chunk_idx = [i for i in range(0, t, self.tile_latent_min_size_t - 1)] if len(t_chunk_idx) == 1 and t_chunk_idx[0] == 0: t_chunk_start_end = [[0, t]] else: t_chunk_start_end = [[t_chunk_idx[i], t_chunk_idx[i + 1] + 1] for i in range(len(t_chunk_idx) - 1)] if t_chunk_start_end[-1][-1] > t: t_chunk_start_end[-1][-1] = t elif t_chunk_start_end[-1][-1] < t: last_start_end = [t_chunk_idx[-1], t] t_chunk_start_end.append(last_start_end) dec_ = [] for idx, (start, end) in enumerate(t_chunk_start_end): chunk_x = x[:, :, start:end] if idx != 0: dec = self.tiled_decode2d(chunk_x)[:, :, 1:] else: dec = self.tiled_decode2d(chunk_x) dec_.append(dec) dec_ = torch.cat(dec_, dim=2) return dec_ def tiled_encode2d(self, x, return_moments=False): overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) row_limit = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. rows = [] for i in range(0, x.shape[3], overlap_size): row = [] for j in range(0, x.shape[4], overlap_size): tile = x[ :, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size, ] tile = self.encoder(tile) tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=4)) moments = torch.cat(result_rows, dim=3) posterior = DiagonalGaussianDistribution(moments) if return_moments: return moments return posterior def tiled_decode2d(self, z): overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) row_limit = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, z.shape[3], overlap_size): row = [] for j in range(0, z.shape[4], overlap_size): tile = z[ :, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size, ] tile = self.post_quant_conv(tile) decoded = self.decoder(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3) return dec def enable_tiling(self, use_tiling: bool = True): self.use_tiling = use_tiling def disable_tiling(self): self.enable_tiling(False) def init_from_ckpt(self, path, ignore_keys=list(), remove_loss=False): sd = torch.load(path, map_location="cpu") print("init from " + path) if "state_dict" in sd: sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, "video") latents = self.encode(inputs).sample() video_recon = self.decode(latents) for idx in range(len(video_recon)): self.logger.log_video(f"recon {batch_idx} {idx}", [tensor_to_video(video_recon[idx])], fps=[10]) class CausalVAEModelWrapper(nn.Module): def __init__(self, model_path, subfolder=None, cache_dir=None, **kwargs): super(CausalVAEModelWrapper, self).__init__() # if os.path.exists(ckpt): # self.vae = CausalVAEModel.load_from_checkpoint(ckpt) self.vae = CausalVAEModel.from_pretrained(model_path, subfolder=subfolder, cache_dir=cache_dir, **kwargs) def encode(self, x): # b c t h w # x = self.vae.encode(x).sample() x = self.vae.encode(x).sample().mul_(0.18215) return x def decode(self, x): # x = self.vae.decode(x) x = self.vae.decode(x / 0.18215) x = rearrange(x, "b c t h w -> b t c h w").contiguous() return x def dtype(self): return self.vae.dtype # # def device(self): # return self.vae.device videobase_ae_stride = { "CausalVAEModel_4x8x8": [4, 8, 8], } videobase_ae_channel = { "CausalVAEModel_4x8x8": 4, } videobase_ae = { "CausalVAEModel_4x8x8": CausalVAEModelWrapper, } ae_stride_config = {} ae_stride_config.update(videobase_ae_stride) ae_channel_config = {} ae_channel_config.update(videobase_ae_channel) def getae_wrapper(ae): """deprecation""" ae = videobase_ae.get(ae, None) assert ae is not None return ae def video_to_image(func): def wrapper(self, x, *args, **kwargs): if x.dim() == 5: t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = func(self, x, *args, **kwargs) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) return x return wrapper class Block(nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) class LinearAttention(Block): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum("bhdn,bhen->bhde", k, v) out = torch.einsum("bhde,bhdn->bhen", context, q) out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w) return self.to_out(out) class LinAttnBlock(LinearAttention): """to match AttnBlock usage""" def __init__(self, in_channels): super().__init__(dim=in_channels, heads=1, dim_head=in_channels) class AttnBlock3D(Block): """Compatible with old versions, there are issues, use with caution.""" def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, t, h, w = q.shape q = q.reshape(b * t, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b * t, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b * t, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, t, h, w) h_ = self.proj_out(h_) return x + h_ class AttnBlock3DFix(nn.Module): """ Thanks to https://github.com/PKU-YuanGroup/Open-Sora-Plan/pull/172. """ def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention # q: (b c t h w) -> (b t c h w) -> (b*t c h*w) -> (b*t h*w c) b, c, t, h, w = q.shape q = q.permute(0, 2, 1, 3, 4) q = q.reshape(b * t, c, h * w) q = q.permute(0, 2, 1) # k: (b c t h w) -> (b t c h w) -> (b*t c h*w) k = k.permute(0, 2, 1, 3, 4) k = k.reshape(b * t, c, h * w) # w: (b*t hw hw) w_ = torch.bmm(q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values # v: (b c t h w) -> (b t c h w) -> (bt c hw) # w_: (bt hw hw) -> (bt hw hw) v = v.permute(0, 2, 1, 3, 4) v = v.reshape(b * t, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] # h_: (b*t c hw) -> (b t c h w) -> (b c t h w) h_ = h_.reshape(b, t, c, h, w) h_ = h_.permute(0, 2, 1, 3, 4) h_ = self.proj_out(h_) return x + h_ class AttnBlock(Block): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) @video_to_image def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class TemporalAttnBlock(Block): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, t, h, w = q.shape q = rearrange(q, "b c t h w -> (b h w) t c") k = rearrange(k, "b c t h w -> (b h w) c t") v = rearrange(v, "b c t h w -> (b h w) c t") w_ = torch.bmm(q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = rearrange(h_, "(b h w) c t -> b c t h w", h=h, w=w) h_ = self.proj_out(h_) return x + h_ def make_attn(in_channels, attn_type="vanilla"): assert attn_type in ["vanilla", "linear", "none", "vanilla3D"], f"attn_type {attn_type} unknown" print(f"making attention of type '{attn_type}' with {in_channels} in_channels") print(attn_type) if attn_type == "vanilla": return AttnBlock(in_channels) elif attn_type == "vanilla3D": return AttnBlock3D(in_channels) elif attn_type == "none": return nn.Identity(in_channels) else: return LinAttnBlock(in_channels) class Conv2d(nn.Conv2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int]] = 3, stride: Union[int, Tuple[int]] = 1, padding: Union[str, int, Tuple[int]] = 0, dilation: Union[int, Tuple[int]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = "zeros", device=None, dtype=None, ) -> None: super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype, ) @video_to_image def forward(self, x): return super().forward(x) class CausalConv3d(nn.Module): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], init_method="random", **kwargs ): super().__init__() self.kernel_size = cast_tuple(kernel_size, 3) self.time_kernel_size = self.kernel_size[0] self.chan_in = chan_in self.chan_out = chan_out stride = kwargs.pop("stride", 1) padding = kwargs.pop("padding", 0) padding = list(cast_tuple(padding, 3)) padding[0] = 0 stride = cast_tuple(stride, 3) self.conv = nn.Conv3d(chan_in, chan_out, self.kernel_size, stride=stride, padding=padding) self._init_weights(init_method) def _init_weights(self, init_method): torch.tensor(self.kernel_size) if init_method == "avg": assert self.kernel_size[1] == 1 and self.kernel_size[2] == 1, "only support temporal up/down sample" assert self.chan_in == self.chan_out, "chan_in must be equal to chan_out" weight = torch.zeros((self.chan_out, self.chan_in, *self.kernel_size)) eyes = torch.concat( [ torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3, torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3, torch.eye(self.chan_in).unsqueeze(-1) * 1 / 3, ], dim=-1, ) weight[:, :, :, 0, 0] = eyes self.conv.weight = nn.Parameter( weight, requires_grad=True, ) elif init_method == "zero": self.conv.weight = nn.Parameter( torch.zeros((self.chan_out, self.chan_in, *self.kernel_size)), requires_grad=True, ) if self.conv.bias is not None: nn.init.constant_(self.conv.bias, 0) def forward(self, x): # 1 + 16 16 as video, 1 as image first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.time_kernel_size - 1, 1, 1)) # b c t h w x = torch.concatenate((first_frame_pad, x), dim=2) # 3 + 16 return self.conv(x) class GroupNorm(Block): def __init__(self, num_channels, num_groups=32, eps=1e-6, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=num_channels, eps=1e-6, affine=True) def forward(self, x): return self.norm(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class ActNorm(nn.Module): def __init__(self, num_features, logdet=False, affine=True, allow_reverse_init=False): assert affine super().__init__() self.logdet = logdet self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1)) self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1)) self.allow_reverse_init = allow_reverse_init self.register_buffer("initialized", torch.tensor(0, dtype=torch.uint8)) def initialize(self, input): with torch.no_grad(): flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1) mean = flatten.mean(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3) std = flatten.std(1).unsqueeze(1).unsqueeze(2).unsqueeze(3).permute(1, 0, 2, 3) self.loc.data.copy_(-mean) self.scale.data.copy_(1 / (std + 1e-6)) def forward(self, input, reverse=False): if reverse: return self.reverse(input) if len(input.shape) == 2: input = input[:, :, None, None] squeeze = True else: squeeze = False _, _, height, width = input.shape if self.training and self.initialized.item() == 0: self.initialize(input) self.initialized.fill_(1) h = self.scale * (input + self.loc) if squeeze: h = h.squeeze(-1).squeeze(-1) if self.logdet: log_abs = torch.log(torch.abs(self.scale)) logdet = height * width * torch.sum(log_abs) logdet = logdet * torch.ones(input.shape[0]).to(input) return h, logdet return h def reverse(self, output): if self.training and self.initialized.item() == 0: if not self.allow_reverse_init: raise RuntimeError( "Initializing ActNorm in reverse direction is " "disabled by default. Use allow_reverse_init=True to enable." ) else: self.initialize(output) self.initialized.fill_(1) if len(output.shape) == 2: output = output[:, :, None, None] squeeze = True else: squeeze = False h = output / self.scale - self.loc if squeeze: h = h.squeeze(-1).squeeze(-1) return h def nonlinearity(x): return x * torch.sigmoid(x) def cast_tuple(t, length=1): return t if isinstance(t, tuple) else ((t,) * length) def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): n_dims = len(x.shape) if src_dim < 0: src_dim = n_dims + src_dim if dest_dim < 0: dest_dim = n_dims + dest_dim assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims dims = list(range(n_dims)) del dims[src_dim] permutation = [] ctr = 0 for i in range(n_dims): if i == dest_dim: permutation.append(src_dim) else: permutation.append(dims[ctr]) ctr += 1 x = x.permute(permutation) if make_contiguous: x = x.contiguous() return x class Codebook(nn.Module): def __init__(self, n_codes, embedding_dim): super().__init__() self.register_buffer("embeddings", torch.randn(n_codes, embedding_dim)) self.register_buffer("N", torch.zeros(n_codes)) self.register_buffer("z_avg", self.embeddings.data.clone()) self.n_codes = n_codes self.embedding_dim = embedding_dim self._need_init = True def _tile(self, x): d, ew = x.shape if d < self.n_codes: n_repeats = (self.n_codes + d - 1) // d std = 0.01 / np.sqrt(ew) x = x.repeat(n_repeats, 1) x = x + torch.randn_like(x) * std return x def _init_embeddings(self, z): # z: [b, c, t, h, w] self._need_init = False flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) y = self._tile(flat_inputs) y.shape[0] _k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) self.embeddings.data.copy_(_k_rand) self.z_avg.data.copy_(_k_rand) self.N.data.copy_(torch.ones(self.n_codes)) def forward(self, z): # z: [b, c, t, h, w] if self._need_init and self.training: self._init_embeddings(z) flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2) distances = ( (flat_inputs**2).sum(dim=1, keepdim=True) - 2 * flat_inputs @ self.embeddings.t() + (self.embeddings.t() ** 2).sum(dim=0, keepdim=True) ) encoding_indices = torch.argmin(distances, dim=1) encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs) encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:]) embeddings = F.embedding(encoding_indices, self.embeddings) embeddings = shift_dim(embeddings, -1, 1) commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach()) # EMA codebook update if self.training: n_total = encode_onehot.sum(dim=0) encode_sum = flat_inputs.t() @ encode_onehot if dist.is_initialized(): dist.all_reduce(n_total) dist.all_reduce(encode_sum) self.N.data.mul_(0.99).add_(n_total, alpha=0.01) self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01) n = self.N.sum() weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n encode_normalized = self.z_avg / weights.unsqueeze(1) self.embeddings.data.copy_(encode_normalized) y = self._tile(flat_inputs) _k_rand = y[torch.randperm(y.shape[0])][: self.n_codes] if dist.is_initialized(): dist.broadcast(_k_rand, 0) usage = (self.N.view(self.n_codes, 1) >= 1).float() self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage)) embeddings_st = (embeddings - z).detach() + z avg_probs = torch.mean(encode_onehot, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return dict( embeddings=embeddings_st, encodings=encoding_indices, commitment_loss=commitment_loss, perplexity=perplexity, ) def dictionary_lookup(self, encodings): embeddings = F.embedding(encodings, self.embeddings) return embeddings class ResnetBlock2D(Block): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) @video_to_image def forward(self, x): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) x = x + h return x class ResnetBlock3D(Block): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = CausalConv3d(in_channels, out_channels, 3, padding=1) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = CausalConv3d(out_channels, out_channels, 3, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = CausalConv3d(in_channels, out_channels, 3, padding=1) else: self.nin_shortcut = CausalConv3d(in_channels, out_channels, 1, padding=0) def forward(self, x): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class Upsample(Block): def __init__(self, in_channels, out_channels): super().__init__() self.with_conv = True if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) @video_to_image def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(Block): def __init__(self, in_channels, out_channels): super().__init__() self.with_conv = True if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0) @video_to_image def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class SpatialDownsample2x(Block): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int]] = (3, 3), stride: Union[int, Tuple[int]] = (2, 2), ): super().__init__() kernel_size = cast_tuple(kernel_size, 2) stride = cast_tuple(stride, 2) self.chan_in = chan_in self.chan_out = chan_out self.kernel_size = kernel_size self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=0) def forward(self, x): pad = (0, 1, 0, 1, 0, 0) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) return x class SpatialUpsample2x(Block): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int]] = (3, 3), stride: Union[int, Tuple[int]] = (1, 1), ): super().__init__() self.chan_in = chan_in self.chan_out = chan_out self.kernel_size = kernel_size self.conv = CausalConv3d(self.chan_in, self.chan_out, (1,) + self.kernel_size, stride=(1,) + stride, padding=1) def forward(self, x): t = x.shape[2] x = rearrange(x, "b c t h w -> b (c t) h w") x = F.interpolate(x, scale_factor=(2, 2), mode="nearest") x = rearrange(x, "b (c t) h w -> b c t h w", t=t) x = self.conv(x) return x class TimeDownsample2x(Block): def __init__(self, chan_in, chan_out, kernel_size: int = 3): super().__init__() self.kernel_size = kernel_size self.conv = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) def forward(self, x): first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) return self.conv(x) class TimeUpsample2x(Block): def __init__(self, chan_in, chan_out): super().__init__() def forward(self, x): if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) return x class TimeDownsampleRes2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 2.0, ): super().__init__() self.kernel_size = cast_tuple(kernel_size, 3) self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1)) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): alpha = torch.sigmoid(self.mix_factor) first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(x) class TimeUpsampleRes2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 2.0, ): super().__init__() self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): alpha = torch.sigmoid(self.mix_factor) if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) return alpha * x + (1 - alpha) * self.conv(x) class TimeDownsampleResAdv2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 1.5, ): super().__init__() self.kernel_size = cast_tuple(kernel_size, 3) self.avg_pool = nn.AvgPool3d((kernel_size, 1, 1), stride=(2, 1, 1)) self.attn = TemporalAttnBlock(in_channels) self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0) self.conv = nn.Conv3d(in_channels, out_channels, self.kernel_size, stride=(2, 1, 1), padding=(0, 1, 1)) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): first_frame_pad = x[:, :, :1, :, :].repeat((1, 1, self.kernel_size[0] - 1, 1, 1)) x = torch.concatenate((first_frame_pad, x), dim=2) alpha = torch.sigmoid(self.mix_factor) return alpha * self.avg_pool(x) + (1 - alpha) * self.conv(self.attn((self.res(x)))) class TimeUpsampleResAdv2x(nn.Module): def __init__( self, in_channels, out_channels, kernel_size: int = 3, mix_factor: float = 1.5, ): super().__init__() self.res = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, dropout=0.0) self.attn = TemporalAttnBlock(in_channels) self.norm = Normalize(in_channels=in_channels) self.conv = CausalConv3d(in_channels, out_channels, kernel_size, padding=1) self.mix_factor = torch.nn.Parameter(torch.Tensor([mix_factor])) def forward(self, x): if x.size(2) > 1: x, x_ = x[:, :, :1], x[:, :, 1:] x_ = F.interpolate(x_, scale_factor=(2, 1, 1), mode="trilinear") x = torch.concat([x, x_], dim=2) alpha = torch.sigmoid(self.mix_factor) return alpha * x + (1 - alpha) * self.conv(self.attn(self.res(x)))