import functools import math from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from einops import rearrange from timm.models.vision_transformer import Mlp class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) self.text_proj = nn.Linear(text_embed_dim, embed_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch, num_frames, channels, height, width = image_embeds.shape image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] return embeds class OpenSoraPatchEmbed3D(nn.Module): """Video to Patch Embedding. Args: patch_size (int): Patch token size. Default: (2,4,4). in_chans (int): Number of input video channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, patch_size=(2, 4, 4), in_chans=3, embed_dim=96, norm_layer=None, flatten=True, ): super().__init__() self.patch_size = patch_size self.flatten = flatten self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): """Forward function.""" # padding _, _, D, H, W = x.size() if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if D % self.patch_size[0] != 0: x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) x = self.proj(x) # (B C T H W) if self.norm is not None: D, Wh, Ww = x.size(2), x.size(3), x.size(4) x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCTHW -> BNC return x class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) freqs = freqs.to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t, dtype): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) if t_freq.dtype != dtype: t_freq = t_freq.to(dtype) t_emb = self.mlp(t_freq) return t_emb class SizeEmbedder(TimestepEmbedder): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.outdim = hidden_size def forward(self, s, bs): if s.ndim == 1: s = s[:, None] assert s.ndim == 2 if s.shape[0] != bs: s = s.repeat(bs // s.shape[0], 1) assert s.shape[0] == bs b, dims = s.shape[0], s.shape[1] s = rearrange(s, "b d -> (b d)") s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) s_emb = self.mlp(s_freq) s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) return s_emb @property def dtype(self): return next(self.parameters()).dtype class OpenSoraCaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__( self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120, ): super().__init__() self.y_proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0, ) self.register_buffer( "y_embedding", torch.randn(token_num, in_channels) / in_channels**0.5, ) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return caption def forward(self, caption, train, force_drop_ids=None): if train: assert caption.shape[2:] == self.y_embedding.shape use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids) caption = self.y_proj(caption) return caption class OpenSoraPositionEmbedding2D(nn.Module): def __init__(self, dim: int) -> None: super().__init__() self.dim = dim assert dim % 4 == 0, "dim must be divisible by 4" half_dim = dim // 2 inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) def _get_sin_cos_emb(self, t: torch.Tensor): out = torch.einsum("i,d->id", t, self.inv_freq) emb_cos = torch.cos(out) emb_sin = torch.sin(out) return torch.cat((emb_sin, emb_cos), dim=-1) @functools.lru_cache(maxsize=512) def _get_cached_emb( self, device: torch.device, dtype: torch.dtype, h: int, w: int, scale: float = 1.0, base_size: Optional[int] = None, ): grid_h = torch.arange(h, device=device) / scale grid_w = torch.arange(w, device=device) / scale if base_size is not None: grid_h *= base_size / h grid_w *= base_size / w grid_h, grid_w = torch.meshgrid( grid_w, grid_h, indexing="ij", ) # here w goes first grid_h = grid_h.t().reshape(-1) grid_w = grid_w.t().reshape(-1) emb_h = self._get_sin_cos_emb(grid_h) emb_w = self._get_sin_cos_emb(grid_w) return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype) def forward( self, x: torch.Tensor, h: int, w: int, scale: Optional[float] = 1.0, base_size: Optional[int] = None, ) -> torch.Tensor: return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size) def get_3d_rotary_pos_embed( embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ RoPE for video tokens with 3D structure. Args: embed_dim: (`int`): The embedding dimension size, corresponding to hidden_size_head. crops_coords (`Tuple[int]`): The top-left and bottom-right coordinates of the crop. grid_size (`Tuple[int]`): The grid size of the spatial positional embedding (height, width). temporal_size (`int`): The size of the temporal dimension. theta (`float`): Scaling factor for frequency computation. use_real (`bool`): If True, return real part and imaginary part separately. Otherwise, return complex numbers. Returns: `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. """ start, stop = crops_coords grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32) grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32) grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) # Compute dimensions for each axis dim_t = embed_dim // 4 dim_h = embed_dim // 8 * 3 dim_w = embed_dim // 8 * 3 # Temporal frequencies freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t)) grid_t = torch.from_numpy(grid_t).float() freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t) freqs_t = freqs_t.repeat_interleave(2, dim=-1) # Spatial frequencies for height and width freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h)) freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w)) grid_h = torch.from_numpy(grid_h).float() grid_w = torch.from_numpy(grid_w).float() freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h) freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w) freqs_h = freqs_h.repeat_interleave(2, dim=-1) freqs_w = freqs_w.repeat_interleave(2, dim=-1) # Broadcast and concatenate tensors along specified dimension def broadcast(tensors, dim=-1): num_tensors = len(tensors) shape_lens = {len(t.shape) for t in tensors} assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim dims = list(zip(*(list(t.shape) for t in tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] assert all( [*(len(set(t[1])) <= 2 for t in expandable_dims)] ), "invalid dimensions for broadcastable concatenation" max_dims = [(t[0], max(t[1])) for t in expandable_dims] expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims] expanded_dims.insert(dim, (dim, dims[dim])) expandable_shapes = list(zip(*(t[1] for t in expanded_dims))) tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)] return torch.cat(tensors, dim=dim) freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1) t, h, w, d = freqs.shape freqs = freqs.view(t * h * w, d) # Generate sine and cosine components sin = freqs.sin() cos = freqs.cos() if use_real: return cos, sin else: freqs_cis = torch.polar(torch.ones_like(freqs), freqs) return freqs_cis def apply_rotary_emb( x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], use_real: bool = True, use_real_unbind_dim: int = -1, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x (`torch.Tensor`): Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ if use_real: cos, sin = freqs_cis # [S, D] cos = cos[None, None] sin = sin[None, None] cos, sin = cos.to(x.device), sin.to(x.device) if use_real_unbind_dim == -1: # Use for example in Lumina x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) elif use_real_unbind_dim == -2: # Use for example in Stable Audio x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2] x_rotated = torch.cat([-x_imag, x_real], dim=-1) else: raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out else: x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) return x_out.type_as(x)