# Adapted from OpenSora # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # OpenSora: https://github.com/hpcaitech/Open-Sora # -------------------------------------------------------- import numbers import os import re import numpy as np import requests import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torchvision.datasets.folder import IMG_EXTENSIONS, pil_loader from torchvision.io import write_video from torchvision.utils import save_image IMG_FPS = 120 VID_EXTENSIONS = (".mp4", ".avi", ".mov", ".mkv") regex = re.compile( r"^(?:http|ftp)s?://" # http:// or https:// r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|" # domain... r"localhost|" # localhost... r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" # ...or ip r"(?::\d+)?" # optional port r"(?:/?|[/?]\S+)$", re.IGNORECASE, ) # H:W ASPECT_RATIO_MAP = { "3:8": "0.38", "9:21": "0.43", "12:25": "0.48", "1:2": "0.50", "9:17": "0.53", "27:50": "0.54", "9:16": "0.56", "5:8": "0.62", "2:3": "0.67", "3:4": "0.75", "1:1": "1.00", "4:3": "1.33", "3:2": "1.50", "16:9": "1.78", "17:9": "1.89", "2:1": "2.00", "50:27": "2.08", } # computed from above code # S = 8294400 ASPECT_RATIO_4K = { "0.38": (1764, 4704), "0.43": (1886, 4400), "0.48": (1996, 4158), "0.50": (2036, 4072), "0.53": (2096, 3960), "0.54": (2118, 3918), "0.62": (2276, 3642), "0.56": (2160, 3840), # base "0.67": (2352, 3528), "0.75": (2494, 3326), "1.00": (2880, 2880), "1.33": (3326, 2494), "1.50": (3528, 2352), "1.78": (3840, 2160), "1.89": (3958, 2096), "2.00": (4072, 2036), "2.08": (4156, 1994), } # S = 3686400 ASPECT_RATIO_2K = { "0.38": (1176, 3136), "0.43": (1256, 2930), "0.48": (1330, 2770), "0.50": (1358, 2716), "0.53": (1398, 2640), "0.54": (1412, 2612), "0.56": (1440, 2560), # base "0.62": (1518, 2428), "0.67": (1568, 2352), "0.75": (1662, 2216), "1.00": (1920, 1920), "1.33": (2218, 1664), "1.50": (2352, 1568), "1.78": (2560, 1440), "1.89": (2638, 1396), "2.00": (2716, 1358), "2.08": (2772, 1330), } # S = 2073600 ASPECT_RATIO_1080P = { "0.38": (882, 2352), "0.43": (942, 2198), "0.48": (998, 2080), "0.50": (1018, 2036), "0.53": (1048, 1980), "0.54": (1058, 1958), "0.56": (1080, 1920), # base "0.62": (1138, 1820), "0.67": (1176, 1764), "0.75": (1248, 1664), "1.00": (1440, 1440), "1.33": (1662, 1246), "1.50": (1764, 1176), "1.78": (1920, 1080), "1.89": (1980, 1048), "2.00": (2036, 1018), "2.08": (2078, 998), } # S = 921600 ASPECT_RATIO_720P = { "0.38": (588, 1568), "0.43": (628, 1466), "0.48": (666, 1388), "0.50": (678, 1356), "0.53": (698, 1318), "0.54": (706, 1306), "0.56": (720, 1280), # base "0.62": (758, 1212), "0.67": (784, 1176), "0.75": (832, 1110), "1.00": (960, 960), "1.33": (1108, 832), "1.50": (1176, 784), "1.78": (1280, 720), "1.89": (1320, 698), "2.00": (1358, 680), "2.08": (1386, 666), } # S = 409920 ASPECT_RATIO_480P = { "0.38": (392, 1046), "0.43": (420, 980), "0.48": (444, 925), "0.50": (452, 904), "0.53": (466, 880), "0.54": (470, 870), "0.56": (480, 854), # base "0.62": (506, 810), "0.67": (522, 784), "0.75": (554, 738), "1.00": (640, 640), "1.33": (740, 555), "1.50": (784, 522), "1.78": (854, 480), "1.89": (880, 466), "2.00": (906, 454), "2.08": (924, 444), } # S = 230400 ASPECT_RATIO_360P = { "0.38": (294, 784), "0.43": (314, 732), "0.48": (332, 692), "0.50": (340, 680), "0.53": (350, 662), "0.54": (352, 652), "0.56": (360, 640), # base "0.62": (380, 608), "0.67": (392, 588), "0.75": (416, 554), "1.00": (480, 480), "1.33": (554, 416), "1.50": (588, 392), "1.78": (640, 360), "1.89": (660, 350), "2.00": (678, 340), "2.08": (692, 332), } # S = 102240 ASPECT_RATIO_240P = { "0.38": (196, 522), "0.43": (210, 490), "0.48": (222, 462), "0.50": (226, 452), "0.53": (232, 438), "0.54": (236, 436), "0.56": (240, 426), # base "0.62": (252, 404), "0.67": (262, 393), "0.75": (276, 368), "1.00": (320, 320), "1.33": (370, 278), "1.50": (392, 262), "1.78": (426, 240), "1.89": (440, 232), "2.00": (452, 226), "2.08": (462, 222), } # S = 36864 ASPECT_RATIO_144P = { "0.38": (117, 312), "0.43": (125, 291), "0.48": (133, 277), "0.50": (135, 270), "0.53": (139, 262), "0.54": (141, 260), "0.56": (144, 256), # base "0.62": (151, 241), "0.67": (156, 234), "0.75": (166, 221), "1.00": (192, 192), "1.33": (221, 165), "1.50": (235, 156), "1.78": (256, 144), "1.89": (263, 139), "2.00": (271, 135), "2.08": (277, 132), } # from PixArt # S = 8294400 ASPECT_RATIO_2880 = { "0.25": (1408, 5760), "0.26": (1408, 5568), "0.27": (1408, 5376), "0.28": (1408, 5184), "0.32": (1600, 4992), "0.33": (1600, 4800), "0.34": (1600, 4672), "0.4": (1792, 4480), "0.42": (1792, 4288), "0.47": (1920, 4096), "0.49": (1920, 3904), "0.51": (1920, 3776), "0.55": (2112, 3840), "0.59": (2112, 3584), "0.68": (2304, 3392), "0.72": (2304, 3200), "0.78": (2496, 3200), "0.83": (2496, 3008), "0.89": (2688, 3008), "0.93": (2688, 2880), "1.0": (2880, 2880), "1.07": (2880, 2688), "1.12": (3008, 2688), "1.21": (3008, 2496), "1.28": (3200, 2496), "1.39": (3200, 2304), "1.47": (3392, 2304), "1.7": (3584, 2112), "1.82": (3840, 2112), "2.03": (3904, 1920), "2.13": (4096, 1920), "2.39": (4288, 1792), "2.5": (4480, 1792), "2.92": (4672, 1600), "3.0": (4800, 1600), "3.12": (4992, 1600), "3.68": (5184, 1408), "3.82": (5376, 1408), "3.95": (5568, 1408), "4.0": (5760, 1408), } # S = 4194304 ASPECT_RATIO_2048 = { "0.25": (1024, 4096), "0.26": (1024, 3968), "0.27": (1024, 3840), "0.28": (1024, 3712), "0.32": (1152, 3584), "0.33": (1152, 3456), "0.35": (1152, 3328), "0.4": (1280, 3200), "0.42": (1280, 3072), "0.48": (1408, 2944), "0.5": (1408, 2816), "0.52": (1408, 2688), "0.57": (1536, 2688), "0.6": (1536, 2560), "0.68": (1664, 2432), "0.72": (1664, 2304), "0.78": (1792, 2304), "0.82": (1792, 2176), "0.88": (1920, 2176), "0.94": (1920, 2048), "1.0": (2048, 2048), "1.07": (2048, 1920), "1.13": (2176, 1920), "1.21": (2176, 1792), "1.29": (2304, 1792), "1.38": (2304, 1664), "1.46": (2432, 1664), "1.67": (2560, 1536), "1.75": (2688, 1536), "2.0": (2816, 1408), "2.09": (2944, 1408), "2.4": (3072, 1280), "2.5": (3200, 1280), "2.89": (3328, 1152), "3.0": (3456, 1152), "3.11": (3584, 1152), "3.62": (3712, 1024), "3.75": (3840, 1024), "3.88": (3968, 1024), "4.0": (4096, 1024), } # S = 1048576 ASPECT_RATIO_1024 = { "0.25": (512, 2048), "0.26": (512, 1984), "0.27": (512, 1920), "0.28": (512, 1856), "0.32": (576, 1792), "0.33": (576, 1728), "0.35": (576, 1664), "0.4": (640, 1600), "0.42": (640, 1536), "0.48": (704, 1472), "0.5": (704, 1408), "0.52": (704, 1344), "0.57": (768, 1344), "0.6": (768, 1280), "0.68": (832, 1216), "0.72": (832, 1152), "0.78": (896, 1152), "0.82": (896, 1088), "0.88": (960, 1088), "0.94": (960, 1024), "1.0": (1024, 1024), "1.07": (1024, 960), "1.13": (1088, 960), "1.21": (1088, 896), "1.29": (1152, 896), "1.38": (1152, 832), "1.46": (1216, 832), "1.67": (1280, 768), "1.75": (1344, 768), "2.0": (1408, 704), "2.09": (1472, 704), "2.4": (1536, 640), "2.5": (1600, 640), "2.89": (1664, 576), "3.0": (1728, 576), "3.11": (1792, 576), "3.62": (1856, 512), "3.75": (1920, 512), "3.88": (1984, 512), "4.0": (2048, 512), } # S = 262144 ASPECT_RATIO_512 = { "0.25": (256, 1024), "0.26": (256, 992), "0.27": (256, 960), "0.28": (256, 928), "0.32": (288, 896), "0.33": (288, 864), "0.35": (288, 832), "0.4": (320, 800), "0.42": (320, 768), "0.48": (352, 736), "0.5": (352, 704), "0.52": (352, 672), "0.57": (384, 672), "0.6": (384, 640), "0.68": (416, 608), "0.72": (416, 576), "0.78": (448, 576), "0.82": (448, 544), "0.88": (480, 544), "0.94": (480, 512), "1.0": (512, 512), "1.07": (512, 480), "1.13": (544, 480), "1.21": (544, 448), "1.29": (576, 448), "1.38": (576, 416), "1.46": (608, 416), "1.67": (640, 384), "1.75": (672, 384), "2.0": (704, 352), "2.09": (736, 352), "2.4": (768, 320), "2.5": (800, 320), "2.89": (832, 288), "3.0": (864, 288), "3.11": (896, 288), "3.62": (928, 256), "3.75": (960, 256), "3.88": (992, 256), "4.0": (1024, 256), } # S = 65536 ASPECT_RATIO_256 = { "0.25": (128, 512), "0.26": (128, 496), "0.27": (128, 480), "0.28": (128, 464), "0.32": (144, 448), "0.33": (144, 432), "0.35": (144, 416), "0.4": (160, 400), "0.42": (160, 384), "0.48": (176, 368), "0.5": (176, 352), "0.52": (176, 336), "0.57": (192, 336), "0.6": (192, 320), "0.68": (208, 304), "0.72": (208, 288), "0.78": (224, 288), "0.82": (224, 272), "0.88": (240, 272), "0.94": (240, 256), "1.0": (256, 256), "1.07": (256, 240), "1.13": (272, 240), "1.21": (272, 224), "1.29": (288, 224), "1.38": (288, 208), "1.46": (304, 208), "1.67": (320, 192), "1.75": (336, 192), "2.0": (352, 176), "2.09": (368, 176), "2.4": (384, 160), "2.5": (400, 160), "2.89": (416, 144), "3.0": (432, 144), "3.11": (448, 144), "3.62": (464, 128), "3.75": (480, 128), "3.88": (496, 128), "4.0": (512, 128), } def get_closest_ratio(height: float, width: float, ratios: dict): aspect_ratio = height / width closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio)) return closest_ratio ASPECT_RATIOS = { "144p": (36864, ASPECT_RATIO_144P), "256": (65536, ASPECT_RATIO_256), "240p": (102240, ASPECT_RATIO_240P), "360p": (230400, ASPECT_RATIO_360P), "512": (262144, ASPECT_RATIO_512), "480p": (409920, ASPECT_RATIO_480P), "720p": (921600, ASPECT_RATIO_720P), "1024": (1048576, ASPECT_RATIO_1024), "1080p": (2073600, ASPECT_RATIO_1080P), "2k": (3686400, ASPECT_RATIO_2K), "2048": (4194304, ASPECT_RATIO_2048), "2880": (8294400, ASPECT_RATIO_2880), "4k": (8294400, ASPECT_RATIO_4K), } def get_image_size(resolution, ar_ratio): ar_key = ASPECT_RATIO_MAP[ar_ratio] rs_dict = ASPECT_RATIOS[resolution][1] assert ar_key in rs_dict, f"Aspect ratio {ar_ratio} not found for resolution {resolution}" return rs_dict[ar_key] NUM_FRAMES_MAP = { "1x": 51, "2x": 102, "4x": 204, "8x": 408, "16x": 816, "2s": 51, "4s": 102, "8s": 204, "16s": 408, "32s": 816, } def get_num_frames(num_frames): if num_frames in NUM_FRAMES_MAP: return NUM_FRAMES_MAP[num_frames] else: return int(num_frames) def save_sample(x, save_path=None, fps=8, normalize=True, value_range=(-1, 1), force_video=False, verbose=True): """ Args: x (Tensor): shape [C, T, H, W] """ assert x.ndim == 4 if not force_video and x.shape[1] == 1: # T = 1: save as image save_path += ".png" x = x.squeeze(1) save_image([x], save_path, normalize=normalize, value_range=value_range) else: save_path += ".mp4" if normalize: low, high = value_range x.clamp_(min=low, max=high) x.sub_(low).div_(max(high - low, 1e-5)) x = x.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 3, 0).to("cpu", torch.uint8) write_video(save_path, x, fps=fps, video_codec="h264") if verbose: print(f"Saved to {save_path}") return save_path def is_url(url): return re.match(regex, url) is not None def download_url(input_path): output_dir = "cache" os.makedirs(output_dir, exist_ok=True) base_name = os.path.basename(input_path) output_path = os.path.join(output_dir, base_name) img_data = requests.get(input_path).content with open(output_path, "wb") as handler: handler.write(img_data) print(f"URL {input_path} downloaded to {output_path}") return output_path def get_transforms_video(name="center", image_size=(256, 256)): if name is None: return None elif name == "center": assert image_size[0] == image_size[1], "image_size must be square for center crop" transform_video = transforms.Compose( [ ToTensorVideo(), # TCHW # video_transforms.RandomHorizontalFlipVideo(), UCFCenterCropVideo(image_size[0]), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) elif name == "resize_crop": transform_video = transforms.Compose( [ ToTensorVideo(), # TCHW ResizeCrop(image_size), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) else: raise NotImplementedError(f"Transform {name} not implemented") return transform_video def crop(clip, i, j, h, w): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W) """ if len(clip.size()) != 4: raise ValueError("clip should be a 4D tensor") return clip[..., i : i + h, j : j + w] def center_crop(clip, crop_size): if not _is_tensor_video_clip(clip): raise ValueError("clip should be a 4D torch.tensor") h, w = clip.size(-2), clip.size(-1) th, tw = crop_size if h < th or w < tw: raise ValueError("height and width must be no smaller than crop_size") i = int(round((h - th) / 2.0)) j = int(round((w - tw) / 2.0)) return crop(clip, i, j, th, tw) def resize_scale(clip, target_size, interpolation_mode): if len(target_size) != 2: raise ValueError(f"target size should be tuple (height, width), instead got {target_size}") H, W = clip.size(-2), clip.size(-1) scale_ = target_size[0] / min(H, W) return torch.nn.functional.interpolate(clip, scale_factor=scale_, mode=interpolation_mode, align_corners=False) class UCFCenterCropVideo: """ First scale to the specified size in equal proportion to the short edge, then center cropping """ def __init__( self, size, interpolation_mode="bilinear", ): if isinstance(size, tuple): if len(size) != 2: raise ValueError(f"size should be tuple (height, width), instead got {size}") self.size = size else: self.size = (size, size) self.interpolation_mode = interpolation_mode def __call__(self, clip): """ Args: clip (torch.tensor): Video clip to be cropped. Size is (T, C, H, W) Returns: torch.tensor: scale resized / center cropped video clip. size is (T, C, crop_size, crop_size) """ clip_resize = resize_scale(clip=clip, target_size=self.size, interpolation_mode=self.interpolation_mode) clip_center_crop = center_crop(clip_resize, self.size) return clip_center_crop def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size}, interpolation_mode={self.interpolation_mode}" def _is_tensor_video_clip(clip): if not torch.is_tensor(clip): raise TypeError("clip should be Tensor. Got %s" % type(clip)) if not clip.ndimension() == 4: raise ValueError("clip should be 4D. Got %dD" % clip.dim()) return True def to_tensor(clip): """ Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor Args: clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W) Return: clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W) """ _is_tensor_video_clip(clip) if not clip.dtype == torch.uint8: raise TypeError("clip tensor should have data type uint8. Got %s" % str(clip.dtype)) # return clip.float().permute(3, 0, 1, 2) / 255.0 return clip.float() / 255.0 class ToTensorVideo: """ Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor """ def __init__(self): pass def __call__(self, clip): """ Args: clip (torch.tensor, dtype=torch.uint8): Size is (T, C, H, W) Return: clip (torch.tensor, dtype=torch.float): Size is (T, C, H, W) """ return to_tensor(clip) def __repr__(self) -> str: return self.__class__.__name__ class ResizeCrop: def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, clip): clip = resize_crop_to_fill(clip, self.size) return clip def __repr__(self) -> str: return f"{self.__class__.__name__}(size={self.size})" def get_transforms_image(name="center", image_size=(256, 256)): if name is None: return None elif name == "center": assert image_size[0] == image_size[1], "Image size must be square for center crop" transform = transforms.Compose( [ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size[0])), # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) elif name == "resize_crop": transform = transforms.Compose( [ transforms.Lambda(lambda pil_image: resize_crop_to_fill(pil_image, image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) else: raise NotImplementedError(f"Transform {name} not implemented") return transform def center_crop_arr(pil_image, image_size): """ Center cropping implementation from ADM. https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 """ while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]) def resize_crop_to_fill(pil_image, image_size): w, h = pil_image.size # PIL is (W, H) th, tw = image_size rh, rw = th / h, tw / w if rh > rw: sh, sw = th, round(w * rh) image = pil_image.resize((sw, sh), Image.BICUBIC) i = 0 j = int(round((sw - tw) / 2.0)) else: sh, sw = round(h * rw), tw image = pil_image.resize((sw, sh), Image.BICUBIC) i = int(round((sh - th) / 2.0)) j = 0 arr = np.array(image) assert i + th <= arr.shape[0] and j + tw <= arr.shape[1] return Image.fromarray(arr[i : i + th, j : j + tw]) def read_video_from_path(path, transform=None, transform_name="center", image_size=(256, 256)): vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW") if transform is None: transform = get_transforms_video(image_size=image_size, name=transform_name) video = transform(vframes) # T C H W video = video.permute(1, 0, 2, 3) return video def read_from_path(path, image_size, transform_name="center"): if is_url(path): path = download_url(path) ext = os.path.splitext(path)[-1].lower() if ext.lower() in VID_EXTENSIONS: return read_video_from_path(path, image_size=image_size, transform_name=transform_name) else: assert ext.lower() in IMG_EXTENSIONS, f"Unsupported file format: {ext}" return read_image_from_path(path, image_size=image_size, transform_name=transform_name) def read_image_from_path(path, transform=None, transform_name="center", num_frames=1, image_size=(256, 256)): image = pil_loader(path) if transform is None: transform = get_transforms_image(image_size=image_size, name=transform_name) image = transform(image) video = image.unsqueeze(0).repeat(num_frames, 1, 1, 1) video = video.permute(1, 0, 2, 3) return video def prepare_multi_resolution_info(info_type, batch_size, image_size, num_frames, fps, device, dtype): if info_type is None: return dict() elif info_type == "PixArtMS": hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(batch_size, 1) ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(batch_size, 1) return dict(ar=ar, hw=hw) elif info_type in ["STDiT2", "OpenSora"]: fps = fps if num_frames > 1 else IMG_FPS fps = torch.tensor([fps], device=device, dtype=dtype).repeat(batch_size) height = torch.tensor([image_size[0]], device=device, dtype=dtype).repeat(batch_size) width = torch.tensor([image_size[1]], device=device, dtype=dtype).repeat(batch_size) num_frames = torch.tensor([num_frames], device=device, dtype=dtype).repeat(batch_size) ar = torch.tensor([image_size[0] / image_size[1]], device=device, dtype=dtype).repeat(batch_size) return dict(height=height, width=width, num_frames=num_frames, ar=ar, fps=fps) else: raise NotImplementedError