Spaces:
Runtime error
Runtime error
File size: 2,212 Bytes
c17f48e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import requests\n",
"import os\n",
"API_TOKEN = os.environ[\"API_TOKEN\"]\n",
"headers = {\"Authorization\": f\"Bearer {API_TOKEN}\"}\n",
"API_URL = \"https://api-inference.huggingface.co/models/facebook/wav2vec2-base-960h\"\n",
"\n",
"def query(filename):\n",
" with open(filename, \"rb\") as f:\n",
" data = f.read()\n",
" response = requests.request(\"POST\", API_URL, headers=headers, data=data)\n",
" return json.loads(response.content.decode(\"utf-8\"))\n",
"\n",
"data = query(\"test.wav\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"\n",
"with open(\"test.wav\", \"rb\") as f:\n",
" data = f.read()\n",
"\n",
"pipe = pipeline(\"automatic-speech-recognition\", \"facebook/wav2vec2-base-960h\")\n",
"pipe(\"test.wav\")\n",
"# {'text': \"GOING ALONG SLUSHY COUNTRY ROADS AND SPEAKING TO DAMP AUDIENCES IN DRAUGHTY SCHOOL ROOMS DAY AFTER DAY FOR A FORTNIGHT HE'LL HAVE TO PUT IN AN APPEARANCE AT SOME PLACE OF WORSHIP ON SUNDAY MORNING AND HE CAN COME TO US IMMEDIATELY AFTERWARDS\"}\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.13 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|