File size: 2,210 Bytes
460fdc7
 
 
42e8f64
 
f913e34
 
069ca0e
 
8805c59
 
 
f7b4006
d4ded0a
 
d8b9e17
ba0ef01
 
d4ded0a
7022131
f7b4006
7022131
7786ff5
7022131
 
 
7786ff5
f7b4006
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
d4ded0a
 
 
a43f014
d4ded0a
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
f7b4006
 
7022131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px

def get_plots(task_data):
    task_df= pd.read_csv(task_data)
    task_df['Total GPU Energy (Wh)'] = task_df['total_gpu_energy']*1000
    task_df = task_df.sort_values(by=['Total GPU Energy (Wh)'])
    task_df['energy_star'] = pd.cut(task_df['total_gpu_energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
    task_df = px.scatter(task_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
    return task_df

def get_model_names(task_data):
    task_df= pd.read_csv(task_data)
    model_names = task_df[['model']]
    print(model_names)
    return model_names

demo = gr.Blocks()

with demo:
    gr.Markdown(
        """# Energy Star Leaderboard

    TODO """
    )
    with gr.Tabs():
        with gr.TabItem("Text Generation 💬"):
            with gr.Row():
                animal_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Image Generation 📷"):
            with gr.Row():
                science_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('data/text_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('data/text_classification.csv'))

        with gr.TabItem("Image Classification 🖼️"):
            with gr.Row():
                landscape_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                wildcard_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )


demo.launch()