File size: 2,121 Bytes
460fdc7
 
 
f7b4006
7786ff5
f7b4006
 
 
 
 
 
7786ff5
f7b4006
 
7786ff5
 
f7b4006
 
 
 
 
 
 
 
 
7786ff5
7022131
f7b4006
7022131
7786ff5
7022131
 
 
7786ff5
f7b4006
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
7022131
f7b4006
7786ff5
 
 
f7b4006
 
7022131
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import gradio as gr
import pandas as pd
from huggingface_hub import list_models


def get_submissions(category):
    submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
    leaderboard_models = []

    for submission in submissions:
        # user, model, likes
        user_id = submission.id.split("/")[0]
        leaderboard_models.append(
            (
                make_clickable_user(user_id),
                make_clickable_model(submission.id),
                submission.likes,
            )
        )

    df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"])
    df.sort_values(by=["Likes"], ascending=False, inplace=True)
    df.insert(0, "Rank", list(range(1, len(df) + 1)))
    return df

# %% app.ipynb 3
demo = gr.Blocks()

with demo:
    gr.Markdown(
        """# Energy Star Leaderboard

    TODO """
    )
    with gr.Tabs():
        with gr.TabItem("Text Generation 💬"):
            with gr.Row():
                animal_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Image Generation 📷"):
            with gr.Row():
                science_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                food_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Image Classification 🖼️"):
            with gr.Row():
                landscape_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )
        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                wildcard_data = gr.components.Dataframe(
                    type="pandas", datatype=["number", "markdown", "markdown", "number"]
                )


demo.launch()