Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import os | |
import zipfile | |
import base64 | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, | |
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, | |
title = {AI Energy Score Leaderboard - February 2025}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", | |
}""" | |
# List of tasks (CSV filenames) | |
tasks = [ | |
'asr.csv', | |
'object_detection.csv', | |
'text_classification.csv', | |
'image_captioning.csv', | |
'question_answering.csv', | |
'text_generation.csv', | |
'image_classification.csv', | |
'sentence_similarity.csv', | |
'image_generation.csv', | |
'summarization.csv' | |
] | |
def format_stars(score): | |
try: | |
score_int = int(score) | |
except Exception: | |
score_int = 0 | |
return f'<span style="color: black; font-size:1.5em;">{"★" * score_int}</span>' | |
def make_link(mname): | |
parts = str(mname).split('/') | |
display_name = parts[1] if len(parts) > 1 else mname | |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>' | |
def generate_html_table_from_df(df): | |
""" | |
Generates an HTML table with tooltips for column headers. | |
""" | |
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1 | |
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"} | |
html = '<table style="width:100%; border-collapse: collapse; font-family: Inter, sans-serif;">' | |
html += '<thead><tr style="background-color: #f2f2f2;">' | |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>' | |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>' | |
html += '<th style="text-align: left; padding: 8px;" title="5 is most efficient, 1 is least. Relative energy efficiency score at launch">Score</th>' | |
html += '</tr></thead>' | |
html += '<tbody>' | |
for _, row in df.iterrows(): | |
energy_numeric = row['gpu_energy_numeric'] | |
energy_str = f"{energy_numeric:.2f}" # Display GPU energy with 2 decimal places | |
bar_width = (energy_numeric / max_energy) * 100 | |
score_val = row['energy_score'] | |
bar_color = color_map.get(str(score_val), "gray") | |
html += '<tr>' | |
html += f'<td style="padding: 8px;">{row["Model"]}</td>' | |
html += f'<td style="padding: 8px;">{energy_str}<br>' | |
html += f'<div style="background-color: {bar_color}; width: {bar_width:.1f}%; height: 10px;"></div></td>' | |
html += f'<td style="padding: 8px;">{row["Score"]}</td>' | |
html += '</tr>' | |
html += '</tbody></table>' | |
return html | |
def get_model_names_html(task, sort_order="Low to High"): | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
ascending = True # Always default to Low to High | |
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending) | |
return generate_html_table_from_df(df) | |
def update_all_tasks(sort_order): | |
return get_all_model_names_html(sort_order) | |
def get_all_model_names_html(sort_order="Low to High"): | |
all_df = pd.DataFrame() | |
for task in tasks: | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
all_df = pd.concat([all_df, df], ignore_index=True) | |
all_df = all_df.drop_duplicates(subset=['model']) | |
ascending = True # Default to Low to High | |
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending) | |
return generate_html_table_from_df(all_df) | |
# --- Build the Gradio Interface --- | |
demo = gr.Blocks(css=""" | |
.gr-dataframe table { | |
table-layout: fixed; | |
width: 100%; | |
} | |
.gr-dataframe th, .gr-dataframe td { | |
max-width: 150px; | |
white-space: nowrap; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
} | |
""") | |
with demo: | |
gr.HTML('<div style="text-align: center;"><img src="logo.png" alt="Logo" style="width: 200px;"></div>') | |
gr.HTML('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score Leaderboard</div>') | |
with gr.Tabs(): | |
with gr.TabItem("All Tasks 💡"): | |
sort_dropdown_all = gr.Dropdown( | |
choices=["Low to High", "High to Low"], | |
label="Sort", | |
value="Low to High" | |
) | |
all_table = gr.HTML(get_all_model_names_html("Low to High")) | |
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table) | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
lines=10, | |
show_copy_button=True, | |
) | |
gr.Markdown("""Last updated: February 2025""") | |
demo.launch() | |