bgamazay's picture
Update app.py
4f8bac4 verified
raw
history blame
9.94 kB
import gradio as gr
import pandas as pd
import plotly.express as px
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{energystarai-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard v.0},
year = {2024},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
"""
Convert the energy_score (assumed to be an integer from 1 to 5)
into that many star characters wrapped in a span with the given color.
"""
try:
score_int = int(score)
except Exception:
score_int = 0
return f'<span style="color: #3fa45bff; font-size:1.2em;">{"★" * score_int}</span>'
def make_link(mname):
"""
Create a markdown link from the model identifier.
For example, if mname is "org/model", display "model" and link to its HF page.
"""
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
def get_plots(task):
"""
Read the energy CSV for a given task and return a Plotly scatter plot.
The y-axis shows the total GPU energy (Wh) and the color is determined by energy_score.
"""
df = pd.read_csv('data/energy/' + task)
# Ensure energy_score is an integer (for discrete color mapping)
df['energy_score'] = df['energy_score'].astype(int)
# Convert kWh to Wh and round to 4 decimal places.
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
# Define a 5-level color mapping: 1 = red, 5 = green.
color_map = {
1: "red",
2: "orange",
3: "yellow",
4: "lightgreen",
5: "green"
}
fig = px.scatter(
df,
x="model",
y="Total GPU Energy (Wh)",
custom_data=['energy_score'],
height=500,
width=800,
color="energy_score",
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"Total Energy (Wh): %{y}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(xaxis_title="Model", yaxis_title="Total GPU Energy (Wh)")
return fig
def get_all_plots():
"""
Combine data from all tasks and return a scatter plot.
Duplicate models (if any) are dropped.
"""
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['energy_score'] = df['energy_score'].astype(int)
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
color_map = {
1: "red",
2: "orange",
3: "yellow",
4: "lightgreen",
5: "green"
}
fig = px.scatter(
all_df,
x="model",
y="Total GPU Energy (Wh)",
custom_data=['energy_score'],
height=500,
width=800,
color="energy_score",
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"Total Energy (Wh): %{y}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(xaxis_title="Model", yaxis_title="Total GPU Energy (Wh)")
return fig
def get_model_names(task):
"""
For a given task, load the energy CSV and return a dataframe with three columns:
- Model (a markdown link),
- Rating (the star rating based on energy_score),
- Total GPU Energy (Wh)
"""
df = pd.read_csv('data/energy/' + task)
df['energy_score'] = df['energy_score'].astype(int)
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
df['Model'] = df['model'].apply(make_link)
df['Rating'] = df['energy_score'].apply(format_stars)
df = df.sort_values(by='Total GPU Energy (Wh)')
model_names = df[['Model', 'Rating', 'Total GPU Energy (Wh)']]
return model_names
def get_all_model_names():
"""
Combine data from all tasks and return a table of models.
Duplicate models are dropped.
"""
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['energy_score'] = df['energy_score'].astype(int)
df['Total GPU Energy (Wh)'] = (df['total_gpu_energy'] * 1000).round(4)
df['Model'] = df['model'].apply(make_link)
df['Rating'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
all_df = all_df.sort_values(by='Total GPU Energy (Wh)')
model_names = all_df[['Model', 'Rating', 'Total GPU Energy (Wh)']]
return model_names
# Build the Gradio interface.
demo = gr.Blocks()
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard - v.0 (2024) 🌎 💻 🌟
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/EnergyStarAI)
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
)
gr.Markdown(
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)!"""
)
with gr.Tabs():
with gr.TabItem("Text Generation 💬"):
with gr.Row():
with gr.Column(scale=1.3):
plot = gr.Plot(get_plots('text_generation.csv'))
with gr.Column(scale=1):
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
with gr.TabItem("Image Generation 📷"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_captioning.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('summarization.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('asr.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('object_detection.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('sentence_similarity.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_all_plots)
with gr.Column():
table = gr.Dataframe(get_all_model_names, datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch()