Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, | |
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, | |
title = {AI Energy Score Leaderboard - February 2025}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", | |
}""" | |
# List of tasks (CSV filenames) | |
tasks = [ | |
'asr.csv', | |
'object_detection.csv', | |
'text_classification.csv', | |
'image_captioning.csv', | |
'question_answering.csv', | |
'text_generation.csv', | |
'image_classification.csv', | |
'sentence_similarity.csv', | |
'image_generation.csv', | |
'summarization.csv' | |
] | |
def format_stars(score): | |
try: | |
score_int = int(score) | |
except Exception: | |
score_int = 0 | |
# Render stars in black with a slightly larger font | |
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>' | |
def make_link(mname): | |
parts = str(mname).split('/') | |
display_name = parts[1] if len(parts) > 1 else mname | |
return f'[{display_name}](https://huggingface.co/{mname})' | |
# --- Plot Functions (Axes swapped) --- | |
def get_plots(task): | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
# Use the raw numeric value from the CSV for GPU Energy | |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') | |
df['energy_score'] = df['energy_score'].astype(int).astype(str) | |
# Create a display model column for labeling | |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) | |
# Use the energy score to control color | |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} | |
# Now plot with the model name on the X axis and GPU Energy on the Y axis. | |
fig = px.scatter( | |
df, | |
x="Display Model", | |
y="total_gpu_energy", | |
color="energy_score", | |
custom_data=['energy_score'], | |
height=500, | |
width=800, | |
color_discrete_map=color_map | |
) | |
# Update hover text to show the model and GPU Energy (with 4 decimals) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Model: %{x}", | |
"GPU Energy (Wh): %{y:.4f}", | |
"Energy Score: %{customdata[0]}" | |
]) | |
) | |
fig.update_layout( | |
xaxis_title="Model", | |
yaxis_title="GPU Energy (Wh)", | |
yaxis_tickformat=".4f", # Add this line to format y-axis ticks | |
yaxis = dict( | |
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well | |
) | |
) | |
return fig | |
def get_all_plots(): | |
all_df = pd.DataFrame() | |
for task in tasks: | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') | |
df['energy_score'] = df['energy_score'].astype(int).astype(str) | |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) | |
all_df = pd.concat([all_df, df], ignore_index=True) | |
all_df = all_df.drop_duplicates(subset=['model']) | |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} | |
fig = px.scatter( | |
all_df, | |
x="Display Model", | |
y="total_gpu_energy", | |
color="energy_score", | |
custom_data=['energy_score'], | |
height=500, | |
width=800, | |
color_discrete_map=color_map | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Model: %{x}", | |
"GPU Energy (Wh): %{y:.4f}", | |
"Energy Score: %{customdata[0]}" | |
]) | |
) | |
fig.update_layout( | |
xaxis_title="Model", | |
yaxis_title="GPU Energy (Wh)", | |
yaxis_tickformat=".4f", # Add this line to format y-axis ticks | |
yaxis = dict( | |
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well | |
) | |
) | |
return fig | |
# --- Leaderboard Table Functions (unchanged except stars) --- | |
def get_model_names(task): | |
df = pd.read_csv('data/energy/' + task) | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
df['energy_score'] = df['energy_score'].astype(int) | |
# For leaderboard display, format GPU Energy to 4 decimals | |
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
# Remove any Class column if it exists | |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] | |
df = df.sort_values(by='GPU Energy (Wh)') | |
return df | |
def get_all_model_names(): | |
all_df = pd.DataFrame() | |
for task in tasks: | |
df = pd.read_csv('data/energy/' + task) | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
all_df = pd.concat([all_df, df], ignore_index=True) | |
all_df = all_df.drop_duplicates(subset=['model']) | |
all_df = all_df.sort_values(by='GPU Energy (Wh)') | |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']] | |
# --- New functions for Text Generation filtering by model class (with swapped axes) --- | |
def get_text_generation_plots(model_class): | |
df = pd.read_csv('data/energy/text_generation.csv') | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
# Filter by the selected model class if the "class" column exists | |
if 'class' in df.columns: | |
df = df[df['class'] == model_class] | |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') | |
df['energy_score'] = df['energy_score'].astype(int).astype(str) | |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1]) | |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"} | |
fig = px.scatter( | |
df, | |
x="Display Model", | |
y="total_gpu_energy", | |
color="energy_score", | |
custom_data=['energy_score'], | |
height=500, | |
width=800, | |
color_discrete_map=color_map | |
) | |
# Update hover text to show the model and GPU Energy (with 4 decimals) | |
fig.update_traces( | |
hovertemplate="<br>".join([ | |
"Model: %{x}", | |
"GPU Energy (Wh): %{y:.4f}", | |
"Energy Score: %{customdata[0]}" | |
]) | |
) | |
fig.update_layout( | |
xaxis_title="Model", | |
yaxis_title="GPU Energy (Wh)", | |
yaxis_tickformat=".4f", # Add this line to format y-axis ticks | |
yaxis = dict( | |
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well | |
) | |
) | |
return fig | |
def get_text_generation_model_names(model_class): | |
df = pd.read_csv('data/energy/text_generation.csv') | |
if df.columns[0].startswith("Unnamed:"): | |
df = df.iloc[:, 1:] | |
if 'class' in df.columns: | |
df = df[df['class'] == model_class] | |
df['energy_score'] = df['energy_score'].astype(int) | |
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}") | |
df['Model'] = df['model'].apply(make_link) | |
df['Score'] = df['energy_score'].apply(format_stars) | |
# Remove the Class column if it exists | |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] | |
df = df.sort_values(by='GPU Energy (Wh)') | |
return df | |
def update_text_generation(model_class): | |
plot = get_text_generation_plots(model_class) | |
table = get_text_generation_model_names(model_class) | |
return plot, table | |
# --- Build the Gradio Interface --- | |
demo = gr.Blocks(css=""" | |
.gr-dataframe table { | |
table-layout: fixed; | |
width: 100%; | |
} | |
.gr-dataframe th, .gr-dataframe td { | |
max-width: 150px; | |
white-space: nowrap; | |
overflow: hidden; | |
text-overflow: ellipsis; | |
} | |
""") | |
with demo: | |
gr.Markdown( | |
"""# AI Energy Score Leaderboard | |
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore) | |
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)""" | |
) | |
with gr.Tabs(): | |
# --- Text Generation Tab with Dropdown for Model Class --- | |
with gr.TabItem("Text Generation 💬"): | |
# Dropdown moved above the plot and leaderboard | |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"], | |
label="Select Model Class", | |
value="C") # Default to C for testing | |
with gr.Row(): | |
with gr.Column(scale=1.3): | |
tg_plot = gr.Plot(get_text_generation_plots("C")) # Default to C for testing | |
with gr.Column(scale=1): | |
tg_table = gr.Dataframe(get_text_generation_model_names("C"), datatype="markdown") | |
# Update plot and table when the dropdown value changes | |
model_class_dropdown.change(fn=update_text_generation, | |
inputs=model_class_dropdown, | |
outputs=[tg_plot, tg_table]) | |
with gr.TabItem("Image Generation 📷"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_generation.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown") | |
with gr.TabItem("Text Classification 🎭"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('text_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Classification 🖼️"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_classification.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown") | |
with gr.TabItem("Image Captioning 📝"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('image_captioning.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown") | |
with gr.TabItem("Summarization 📃"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('summarization.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown") | |
with gr.TabItem("Automatic Speech Recognition 💬"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('asr.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown") | |
with gr.TabItem("Object Detection 🚘"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('object_detection.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown") | |
with gr.TabItem("Sentence Similarity 📚"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('sentence_similarity.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown") | |
with gr.TabItem("Extractive QA ❔"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_plots('question_answering.csv')) | |
with gr.Column(): | |
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown") | |
with gr.TabItem("All Tasks 💡"): | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot(get_all_plots()) | |
with gr.Column(): | |
table = gr.Dataframe(get_all_model_names(), datatype="markdown") | |
with gr.Accordion("📙 Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
lines=10, | |
show_copy_button=True, | |
) | |
gr.Markdown( | |
"""Last updated: February 2025""" | |
) | |
demo.launch() |