bgamazay's picture
Update app.py
9f45ced verified
raw
history blame
13.1 kB
import gradio as gr
import pandas as pd
import plotly.express as px
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in black with a slightly larger font
return f'<span style="color: black !important; font-size:1.5em !important;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
# --- Plot Functions (Axes swapped) ---
def get_plots(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
# Use the raw numeric value from the CSV for GPU Energy
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
# Create a display model column for labeling
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
# Use the energy score to control color
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
# Now plot with the model name on the X axis and GPU Energy on the Y axis.
fig = px.scatter(
df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
# Update hover text to show the model and GPU Energy (with 4 decimals)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
yaxis = dict(
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
)
)
return fig
def get_all_plots():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
fig = px.scatter(
all_df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
yaxis = dict(
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
)
)
return fig
# --- Leaderboard Table Functions (unchanged except stars) ---
def get_model_names(task):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
# For leaderboard display, format GPU Energy to 4 decimals
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
# Remove any Class column if it exists
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
df = df.sort_values(by='GPU Energy (Wh)')
return df
def get_all_model_names():
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
df['energy_score'] = df['energy_score'].astype(int)
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
all_df = all_df.sort_values(by='GPU Energy (Wh)')
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
# --- New functions for Text Generation filtering by model class (with swapped axes) ---
def get_text_generation_plots(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
# Filter by the selected model class if the "class" column exists
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='raise')
df['energy_score'] = df['energy_score'].astype(int).astype(str)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
fig = px.scatter(
df,
x="Display Model",
y="total_gpu_energy",
color="energy_score",
custom_data=['energy_score'],
height=500,
width=800,
color_discrete_map=color_map
)
# Update hover text to show the model and GPU Energy (with 4 decimals)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{x}",
"GPU Energy (Wh): %{y:.4f}",
"Energy Score: %{customdata[0]}"
])
)
fig.update_layout(
xaxis_title="Model",
yaxis_title="GPU Energy (Wh)",
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
yaxis = dict(
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
)
)
return fig
def get_text_generation_model_names(model_class):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['energy_score'] = df['energy_score'].astype(int)
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
# Remove the Class column if it exists
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
df = df.sort_values(by='GPU Energy (Wh)')
return df
def update_text_generation(model_class):
plot = get_text_generation_plots(model_class)
table = get_text_generation_model_names(model_class)
return plot, table
# --- Build the Gradio Interface ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Select different tasks to see scored models. Submit open models for testing and learn about testing proprietary models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
# --- Text Generation Tab with Dropdown for Model Class ---
with gr.TabItem("Text Generation 💬"):
# Dropdown moved above the plot and leaderboard
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
label="Select Model Class",
value="C") # Default to C for testing
with gr.Row():
with gr.Column(scale=1.3):
tg_plot = gr.Plot(get_text_generation_plots("C")) # Default to C for testing
with gr.Column(scale=1):
tg_table = gr.Dataframe(get_text_generation_model_names("C"), datatype="markdown")
# Update plot and table when the dropdown value changes
model_class_dropdown.change(fn=update_text_generation,
inputs=model_class_dropdown,
outputs=[tg_plot, tg_table])
with gr.TabItem("Image Generation 📷"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_captioning.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('summarization.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('asr.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('object_detection.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('sentence_similarity.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_all_plots())
with gr.Column():
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown(
"""Last updated: February 2025"""
)
demo.launch()