bgamazay commited on
Commit
077e5da
·
verified ·
1 Parent(s): 090369e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -38
app.py CHANGED
@@ -11,7 +11,7 @@ CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
11
  howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
12
  }"""
13
 
14
- # List of tasks (CSV filenames)
15
  tasks = [
16
  'asr.csv',
17
  'object_detection.csv',
@@ -30,49 +30,68 @@ def format_stars(score):
30
  score_int = int(score)
31
  except Exception:
32
  score_int = 0
33
- return f'<span style="color: #3fa45bff !important; font-size:2em !important;">{"" * score_int}</span>'
 
34
 
35
  def make_link(mname):
 
36
  parts = str(mname).split('/')
37
  display_name = parts[1] if len(parts) > 1 else mname
38
  return f'[{display_name}](https://huggingface.co/{mname})'
39
 
40
  def get_plots(task):
 
41
  df = pd.read_csv('data/energy/' + task)
 
42
  if df.columns[0].startswith("Unnamed:"):
43
  df = df.iloc[:, 1:]
44
- df['energy_score'] = df['energy_score'].astype(int)
 
 
 
45
  df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
46
 
 
47
  color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
48
 
 
 
 
 
 
49
  fig = px.scatter(
50
  df,
51
- x="total_gpu_energy", # Ensure correct column for x-axis
52
- y="Display Model", # Keep model name for y-axis
53
- color="energy_score", # Ensure correct column for point color
54
- custom_data=['energy_score'],
55
  height=500,
56
  width=800,
57
- color_discrete_map=color_map
58
  )
59
  fig.update_traces(
60
- hovertemplate="<br>".join([
61
- "Model: %{y}",
62
- "GPU Energy (Wh): %{x}",
63
- "Energy Score: %{customdata[0]}"
64
- ])
 
 
 
 
 
65
  )
66
- fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
67
  return fig
68
 
69
  def get_all_plots():
 
70
  all_df = pd.DataFrame()
71
  for task in tasks:
72
  df = pd.read_csv('data/energy/' + task)
73
  if df.columns[0].startswith("Unnamed:"):
74
  df = df.iloc[:, 1:]
75
- df['energy_score'] = df['energy_score'].astype(int)
 
76
  df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
77
  all_df = pd.concat([all_df, df], ignore_index=True)
78
  all_df = all_df.drop_duplicates(subset=['model'])
@@ -81,38 +100,41 @@ def get_all_plots():
81
 
82
  fig = px.scatter(
83
  all_df,
84
- x="total_gpu_energy", # Ensure correct column for x-axis
85
  y="Display Model",
86
- color="energy_score", # Ensure correct column for point color
87
- custom_data=['energy_score'],
88
  height=500,
89
  width=800,
90
- color_discrete_map=color_map
91
  )
92
  fig.update_traces(
93
- hovertemplate="<br>".join([
94
- "Model: %{y}",
95
- "GPU Energy (Wh): %{x}",
96
- "Energy Score: %{customdata[0]}"
97
- ])
 
 
 
 
 
98
  )
99
- fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
100
  return fig
101
 
102
  def get_model_names(task):
103
  """
104
  For a given task, load the energy CSV and return a dataframe with the following columns:
105
  - Model (a markdown link)
106
- - GPU Energy (Wh) formatted as a string with 4 decimal places
107
  - Score (a star rating based on energy_score)
108
- For text_generation.csv only, also add the "Class" column from the CSV.
109
- The final column order is: Model, GPU Energy (Wh), Score, [Class].
110
  """
111
  df = pd.read_csv('data/energy/' + task)
112
  if df.columns[0].startswith("Unnamed:"):
113
  df = df.iloc[:, 1:]
114
- df['energy_score'] = df['energy_score'].astype(int)
115
- # Format the energy as a string with 4 decimals
116
  df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
117
  df['Model'] = df['model'].apply(make_link)
118
  df['Score'] = df['energy_score'].apply(format_stars)
@@ -123,13 +145,14 @@ def get_model_names(task):
123
  else:
124
  df = df[['Model', 'GPU Energy (Wh)', 'Score']]
125
 
126
- df = df.sort_values(by='GPU Energy (Wh)')
 
127
  return df
128
 
129
  def get_all_model_names():
130
  """
131
  Combine data from all tasks and return a leaderboard table with:
132
- - Model, GPU Energy (Wh), Score
133
  Duplicate models are dropped.
134
  """
135
  all_df = pd.DataFrame()
@@ -137,17 +160,18 @@ def get_all_model_names():
137
  df = pd.read_csv('data/energy/' + task)
138
  if df.columns[0].startswith("Unnamed:"):
139
  df = df.iloc[:, 1:]
140
- df['energy_score'] = df['energy_score'].astype(int)
 
141
  df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
142
  df['Model'] = df['model'].apply(make_link)
143
  df['Score'] = df['energy_score'].apply(format_stars)
144
  all_df = pd.concat([all_df, df], ignore_index=True)
145
  all_df = all_df.drop_duplicates(subset=['model'])
146
- all_df = all_df.sort_values(by='GPU Energy (Wh)')
147
  return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
148
 
149
  # Build the Gradio interface.
150
- # The css argument below makes all tables (e.g. leaderboard) use a fixed layout with narrower columns.
151
  demo = gr.Blocks(css="""
152
  .gr-dataframe table {
153
  table-layout: fixed;
@@ -257,8 +281,6 @@ Click through the tasks below to see how different models measure up in terms of
257
  lines=10,
258
  show_copy_button=True,
259
  )
260
- gr.Markdown(
261
- """Last updated: February 2025"""
262
- )
263
 
264
  demo.launch()
 
11
  howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
12
  }"""
13
 
14
+ # List of CSV filenames (one per task)
15
  tasks = [
16
  'asr.csv',
17
  'object_detection.csv',
 
30
  score_int = int(score)
31
  except Exception:
32
  score_int = 0
33
+ # Display a star rating () based on the energy score.
34
+ return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
35
 
36
  def make_link(mname):
37
+ # Make a Markdown link from the model name.
38
  parts = str(mname).split('/')
39
  display_name = parts[1] if len(parts) > 1 else mname
40
  return f'[{display_name}](https://huggingface.co/{mname})'
41
 
42
  def get_plots(task):
43
+ # Read the CSV for the given task.
44
  df = pd.read_csv('data/energy/' + task)
45
+ # If the first column is unnamed (the extra blank column), drop it.
46
  if df.columns[0].startswith("Unnamed:"):
47
  df = df.iloc[:, 1:]
48
+ # Convert the numeric columns
49
+ df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
50
+ df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
51
+ # Create a short version of the model name for display on the y-axis.
52
  df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
53
 
54
+ # Define a discrete color mapping for energy scores.
55
  color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
56
 
57
+ # Build a scatter plot:
58
+ # - x-axis: total_gpu_energy
59
+ # - y-axis: Display Model (short model name)
60
+ # - Color: energy_score
61
+ # - Custom tooltip will include the full model name, energy value and energy score.
62
  fig = px.scatter(
63
  df,
64
+ x="total_gpu_energy",
65
+ y="Display Model",
66
+ color="energy_score",
67
+ custom_data=['model', 'total_gpu_energy', 'energy_score'],
68
  height=500,
69
  width=800,
70
+ color_discrete_map=color_map,
71
  )
72
  fig.update_traces(
73
+ hovertemplate=(
74
+ "Model: %{customdata[0]}<br>" +
75
+ "Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
76
+ "Energy Score: %{customdata[2]}"
77
+ )
78
+ )
79
+ fig.update_layout(
80
+ xaxis_title="Total GPU Energy (Wh)",
81
+ yaxis_title="Model",
82
+ margin=dict(l=40, r=40, t=40, b=40)
83
  )
 
84
  return fig
85
 
86
  def get_all_plots():
87
+ # Combine data from all tasks.
88
  all_df = pd.DataFrame()
89
  for task in tasks:
90
  df = pd.read_csv('data/energy/' + task)
91
  if df.columns[0].startswith("Unnamed:"):
92
  df = df.iloc[:, 1:]
93
+ df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
94
+ df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
95
  df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
96
  all_df = pd.concat([all_df, df], ignore_index=True)
97
  all_df = all_df.drop_duplicates(subset=['model'])
 
100
 
101
  fig = px.scatter(
102
  all_df,
103
+ x="total_gpu_energy",
104
  y="Display Model",
105
+ color="energy_score",
106
+ custom_data=['model', 'total_gpu_energy', 'energy_score'],
107
  height=500,
108
  width=800,
109
+ color_discrete_map=color_map,
110
  )
111
  fig.update_traces(
112
+ hovertemplate=(
113
+ "Model: %{customdata[0]}<br>" +
114
+ "Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
115
+ "Energy Score: %{customdata[2]}"
116
+ )
117
+ )
118
+ fig.update_layout(
119
+ xaxis_title="Total GPU Energy (Wh)",
120
+ yaxis_title="Model",
121
+ margin=dict(l=40, r=40, t=40, b=40)
122
  )
 
123
  return fig
124
 
125
  def get_model_names(task):
126
  """
127
  For a given task, load the energy CSV and return a dataframe with the following columns:
128
  - Model (a markdown link)
129
+ - GPU Energy (Wh) (formatted to 4 decimal places)
130
  - Score (a star rating based on energy_score)
131
+ For text_generation.csv only, also include the "Class" column if it exists.
 
132
  """
133
  df = pd.read_csv('data/energy/' + task)
134
  if df.columns[0].startswith("Unnamed:"):
135
  df = df.iloc[:, 1:]
136
+ df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
137
+ df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
138
  df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
139
  df['Model'] = df['model'].apply(make_link)
140
  df['Score'] = df['energy_score'].apply(format_stars)
 
145
  else:
146
  df = df[['Model', 'GPU Energy (Wh)', 'Score']]
147
 
148
+ # Sort by the numeric energy value.
149
+ df = df.sort_values(by='total_gpu_energy')
150
  return df
151
 
152
  def get_all_model_names():
153
  """
154
  Combine data from all tasks and return a leaderboard table with:
155
+ - Model, GPU Energy (Wh), Score.
156
  Duplicate models are dropped.
157
  """
158
  all_df = pd.DataFrame()
 
160
  df = pd.read_csv('data/energy/' + task)
161
  if df.columns[0].startswith("Unnamed:"):
162
  df = df.iloc[:, 1:]
163
+ df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
164
+ df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
165
  df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
166
  df['Model'] = df['model'].apply(make_link)
167
  df['Score'] = df['energy_score'].apply(format_stars)
168
  all_df = pd.concat([all_df, df], ignore_index=True)
169
  all_df = all_df.drop_duplicates(subset=['model'])
170
+ all_df = all_df.sort_values(by='total_gpu_energy')
171
  return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
172
 
173
  # Build the Gradio interface.
174
+ # The CSS below sets fixed layouts for tables.
175
  demo = gr.Blocks(css="""
176
  .gr-dataframe table {
177
  table-layout: fixed;
 
281
  lines=10,
282
  show_copy_button=True,
283
  )
284
+ gr.Markdown("Last updated: February 2025")
 
 
285
 
286
  demo.launch()