Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
|
|
11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
12 |
}"""
|
13 |
|
14 |
-
# List of
|
15 |
tasks = [
|
16 |
'asr.csv',
|
17 |
'object_detection.csv',
|
@@ -30,49 +30,68 @@ def format_stars(score):
|
|
30 |
score_int = int(score)
|
31 |
except Exception:
|
32 |
score_int = 0
|
33 |
-
|
|
|
34 |
|
35 |
def make_link(mname):
|
|
|
36 |
parts = str(mname).split('/')
|
37 |
display_name = parts[1] if len(parts) > 1 else mname
|
38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
39 |
|
40 |
def get_plots(task):
|
|
|
41 |
df = pd.read_csv('data/energy/' + task)
|
|
|
42 |
if df.columns[0].startswith("Unnamed:"):
|
43 |
df = df.iloc[:, 1:]
|
44 |
-
|
|
|
|
|
|
|
45 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
46 |
|
|
|
47 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
fig = px.scatter(
|
50 |
df,
|
51 |
-
x="total_gpu_energy",
|
52 |
-
y="Display Model",
|
53 |
-
color="energy_score",
|
54 |
-
custom_data=['energy_score'],
|
55 |
height=500,
|
56 |
width=800,
|
57 |
-
color_discrete_map=color_map
|
58 |
)
|
59 |
fig.update_traces(
|
60 |
-
hovertemplate=
|
61 |
-
"Model: %{
|
62 |
-
"GPU Energy (Wh): %{
|
63 |
-
"Energy Score: %{customdata[
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
-
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
67 |
return fig
|
68 |
|
69 |
def get_all_plots():
|
|
|
70 |
all_df = pd.DataFrame()
|
71 |
for task in tasks:
|
72 |
df = pd.read_csv('data/energy/' + task)
|
73 |
if df.columns[0].startswith("Unnamed:"):
|
74 |
df = df.iloc[:, 1:]
|
75 |
-
df['
|
|
|
76 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
77 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
78 |
all_df = all_df.drop_duplicates(subset=['model'])
|
@@ -81,38 +100,41 @@ def get_all_plots():
|
|
81 |
|
82 |
fig = px.scatter(
|
83 |
all_df,
|
84 |
-
x="total_gpu_energy",
|
85 |
y="Display Model",
|
86 |
-
color="energy_score",
|
87 |
-
custom_data=['energy_score'],
|
88 |
height=500,
|
89 |
width=800,
|
90 |
-
color_discrete_map=color_map
|
91 |
)
|
92 |
fig.update_traces(
|
93 |
-
hovertemplate=
|
94 |
-
"Model: %{
|
95 |
-
"GPU Energy (Wh): %{
|
96 |
-
"Energy Score: %{customdata[
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
-
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
100 |
return fig
|
101 |
|
102 |
def get_model_names(task):
|
103 |
"""
|
104 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
105 |
- Model (a markdown link)
|
106 |
-
- GPU Energy (Wh) formatted
|
107 |
- Score (a star rating based on energy_score)
|
108 |
-
For text_generation.csv only, also
|
109 |
-
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
110 |
"""
|
111 |
df = pd.read_csv('data/energy/' + task)
|
112 |
if df.columns[0].startswith("Unnamed:"):
|
113 |
df = df.iloc[:, 1:]
|
114 |
-
df['
|
115 |
-
|
116 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
117 |
df['Model'] = df['model'].apply(make_link)
|
118 |
df['Score'] = df['energy_score'].apply(format_stars)
|
@@ -123,13 +145,14 @@ def get_model_names(task):
|
|
123 |
else:
|
124 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
125 |
|
126 |
-
|
|
|
127 |
return df
|
128 |
|
129 |
def get_all_model_names():
|
130 |
"""
|
131 |
Combine data from all tasks and return a leaderboard table with:
|
132 |
-
- Model, GPU Energy (Wh), Score
|
133 |
Duplicate models are dropped.
|
134 |
"""
|
135 |
all_df = pd.DataFrame()
|
@@ -137,17 +160,18 @@ def get_all_model_names():
|
|
137 |
df = pd.read_csv('data/energy/' + task)
|
138 |
if df.columns[0].startswith("Unnamed:"):
|
139 |
df = df.iloc[:, 1:]
|
140 |
-
df['
|
|
|
141 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
142 |
df['Model'] = df['model'].apply(make_link)
|
143 |
df['Score'] = df['energy_score'].apply(format_stars)
|
144 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
145 |
all_df = all_df.drop_duplicates(subset=['model'])
|
146 |
-
all_df = all_df.sort_values(by='
|
147 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
148 |
|
149 |
# Build the Gradio interface.
|
150 |
-
# The
|
151 |
demo = gr.Blocks(css="""
|
152 |
.gr-dataframe table {
|
153 |
table-layout: fixed;
|
@@ -257,8 +281,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
257 |
lines=10,
|
258 |
show_copy_button=True,
|
259 |
)
|
260 |
-
gr.Markdown(
|
261 |
-
"""Last updated: February 2025"""
|
262 |
-
)
|
263 |
|
264 |
demo.launch()
|
|
|
11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
12 |
}"""
|
13 |
|
14 |
+
# List of CSV filenames (one per task)
|
15 |
tasks = [
|
16 |
'asr.csv',
|
17 |
'object_detection.csv',
|
|
|
30 |
score_int = int(score)
|
31 |
except Exception:
|
32 |
score_int = 0
|
33 |
+
# Display a star rating (★) based on the energy score.
|
34 |
+
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
35 |
|
36 |
def make_link(mname):
|
37 |
+
# Make a Markdown link from the model name.
|
38 |
parts = str(mname).split('/')
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
41 |
|
42 |
def get_plots(task):
|
43 |
+
# Read the CSV for the given task.
|
44 |
df = pd.read_csv('data/energy/' + task)
|
45 |
+
# If the first column is unnamed (the extra blank column), drop it.
|
46 |
if df.columns[0].startswith("Unnamed:"):
|
47 |
df = df.iloc[:, 1:]
|
48 |
+
# Convert the numeric columns
|
49 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
50 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
51 |
+
# Create a short version of the model name for display on the y-axis.
|
52 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
53 |
|
54 |
+
# Define a discrete color mapping for energy scores.
|
55 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
56 |
|
57 |
+
# Build a scatter plot:
|
58 |
+
# - x-axis: total_gpu_energy
|
59 |
+
# - y-axis: Display Model (short model name)
|
60 |
+
# - Color: energy_score
|
61 |
+
# - Custom tooltip will include the full model name, energy value and energy score.
|
62 |
fig = px.scatter(
|
63 |
df,
|
64 |
+
x="total_gpu_energy",
|
65 |
+
y="Display Model",
|
66 |
+
color="energy_score",
|
67 |
+
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
68 |
height=500,
|
69 |
width=800,
|
70 |
+
color_discrete_map=color_map,
|
71 |
)
|
72 |
fig.update_traces(
|
73 |
+
hovertemplate=(
|
74 |
+
"Model: %{customdata[0]}<br>" +
|
75 |
+
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
|
76 |
+
"Energy Score: %{customdata[2]}"
|
77 |
+
)
|
78 |
+
)
|
79 |
+
fig.update_layout(
|
80 |
+
xaxis_title="Total GPU Energy (Wh)",
|
81 |
+
yaxis_title="Model",
|
82 |
+
margin=dict(l=40, r=40, t=40, b=40)
|
83 |
)
|
|
|
84 |
return fig
|
85 |
|
86 |
def get_all_plots():
|
87 |
+
# Combine data from all tasks.
|
88 |
all_df = pd.DataFrame()
|
89 |
for task in tasks:
|
90 |
df = pd.read_csv('data/energy/' + task)
|
91 |
if df.columns[0].startswith("Unnamed:"):
|
92 |
df = df.iloc[:, 1:]
|
93 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
94 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
95 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
96 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
97 |
all_df = all_df.drop_duplicates(subset=['model'])
|
|
|
100 |
|
101 |
fig = px.scatter(
|
102 |
all_df,
|
103 |
+
x="total_gpu_energy",
|
104 |
y="Display Model",
|
105 |
+
color="energy_score",
|
106 |
+
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
107 |
height=500,
|
108 |
width=800,
|
109 |
+
color_discrete_map=color_map,
|
110 |
)
|
111 |
fig.update_traces(
|
112 |
+
hovertemplate=(
|
113 |
+
"Model: %{customdata[0]}<br>" +
|
114 |
+
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
|
115 |
+
"Energy Score: %{customdata[2]}"
|
116 |
+
)
|
117 |
+
)
|
118 |
+
fig.update_layout(
|
119 |
+
xaxis_title="Total GPU Energy (Wh)",
|
120 |
+
yaxis_title="Model",
|
121 |
+
margin=dict(l=40, r=40, t=40, b=40)
|
122 |
)
|
|
|
123 |
return fig
|
124 |
|
125 |
def get_model_names(task):
|
126 |
"""
|
127 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
128 |
- Model (a markdown link)
|
129 |
+
- GPU Energy (Wh) (formatted to 4 decimal places)
|
130 |
- Score (a star rating based on energy_score)
|
131 |
+
For text_generation.csv only, also include the "Class" column if it exists.
|
|
|
132 |
"""
|
133 |
df = pd.read_csv('data/energy/' + task)
|
134 |
if df.columns[0].startswith("Unnamed:"):
|
135 |
df = df.iloc[:, 1:]
|
136 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
137 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
138 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
139 |
df['Model'] = df['model'].apply(make_link)
|
140 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
145 |
else:
|
146 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
147 |
|
148 |
+
# Sort by the numeric energy value.
|
149 |
+
df = df.sort_values(by='total_gpu_energy')
|
150 |
return df
|
151 |
|
152 |
def get_all_model_names():
|
153 |
"""
|
154 |
Combine data from all tasks and return a leaderboard table with:
|
155 |
+
- Model, GPU Energy (Wh), Score.
|
156 |
Duplicate models are dropped.
|
157 |
"""
|
158 |
all_df = pd.DataFrame()
|
|
|
160 |
df = pd.read_csv('data/energy/' + task)
|
161 |
if df.columns[0].startswith("Unnamed:"):
|
162 |
df = df.iloc[:, 1:]
|
163 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
164 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
165 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
166 |
df['Model'] = df['model'].apply(make_link)
|
167 |
df['Score'] = df['energy_score'].apply(format_stars)
|
168 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
169 |
all_df = all_df.drop_duplicates(subset=['model'])
|
170 |
+
all_df = all_df.sort_values(by='total_gpu_energy')
|
171 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
172 |
|
173 |
# Build the Gradio interface.
|
174 |
+
# The CSS below sets fixed layouts for tables.
|
175 |
demo = gr.Blocks(css="""
|
176 |
.gr-dataframe table {
|
177 |
table-layout: fixed;
|
|
|
281 |
lines=10,
|
282 |
show_copy_button=True,
|
283 |
)
|
284 |
+
gr.Markdown("Last updated: February 2025")
|
|
|
|
|
285 |
|
286 |
demo.launch()
|