Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,7 @@ def make_link(mname):
|
|
38 |
display_name = parts[1] if len(parts) > 1 else mname
|
39 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
40 |
|
41 |
-
# --- Plot Functions (
|
42 |
|
43 |
def get_plots(task):
|
44 |
df = pd.read_csv('data/energy/' + task)
|
@@ -53,8 +53,8 @@ def get_plots(task):
|
|
53 |
# Use the energy score to control color
|
54 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
55 |
|
56 |
-
# Now plot
|
57 |
-
fig = px.
|
58 |
df,
|
59 |
x="Display Model",
|
60 |
y="total_gpu_energy",
|
@@ -75,9 +75,9 @@ def get_plots(task):
|
|
75 |
fig.update_layout(
|
76 |
xaxis_title="Model",
|
77 |
yaxis_title="GPU Energy (Wh)",
|
78 |
-
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
|
79 |
yaxis = dict(
|
80 |
-
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
|
81 |
)
|
82 |
)
|
83 |
return fig
|
@@ -96,7 +96,7 @@ def get_all_plots():
|
|
96 |
|
97 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
98 |
|
99 |
-
fig = px.
|
100 |
all_df,
|
101 |
x="Display Model",
|
102 |
y="total_gpu_energy",
|
@@ -116,43 +116,14 @@ def get_all_plots():
|
|
116 |
fig.update_layout(
|
117 |
xaxis_title="Model",
|
118 |
yaxis_title="GPU Energy (Wh)",
|
119 |
-
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
|
120 |
yaxis = dict(
|
121 |
-
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
|
122 |
)
|
123 |
)
|
124 |
return fig
|
125 |
|
126 |
-
# ---
|
127 |
-
|
128 |
-
def get_model_names(task):
|
129 |
-
df = pd.read_csv('data/energy/' + task)
|
130 |
-
if df.columns[0].startswith("Unnamed:"):
|
131 |
-
df = df.iloc[:, 1:]
|
132 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
133 |
-
# For leaderboard display, format GPU Energy to 4 decimals
|
134 |
-
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
|
135 |
-
df['Model'] = df['model'].apply(make_link)
|
136 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
137 |
-
# Remove any Class column if it exists
|
138 |
-
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
139 |
-
df = df.sort_values(by='GPU Energy (Wh)')
|
140 |
-
return df
|
141 |
-
|
142 |
-
def get_all_model_names():
|
143 |
-
all_df = pd.DataFrame()
|
144 |
-
for task in tasks:
|
145 |
-
df = pd.read_csv('data/energy/' + task)
|
146 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
147 |
-
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
|
148 |
-
df['Model'] = df['model'].apply(make_link)
|
149 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
150 |
-
all_df = pd.concat([all_df, df], ignore_index=True)
|
151 |
-
all_df = all_df.drop_duplicates(subset=['model'])
|
152 |
-
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
153 |
-
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
154 |
-
|
155 |
-
# --- New functions for Text Generation filtering by model class (with swapped axes) ---
|
156 |
|
157 |
def get_text_generation_plots(model_class):
|
158 |
df = pd.read_csv('data/energy/text_generation.csv')
|
@@ -167,7 +138,7 @@ def get_text_generation_plots(model_class):
|
|
167 |
|
168 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
169 |
|
170 |
-
fig = px.
|
171 |
df,
|
172 |
x="Display Model",
|
173 |
y="total_gpu_energy",
|
@@ -177,7 +148,6 @@ def get_text_generation_plots(model_class):
|
|
177 |
width=800,
|
178 |
color_discrete_map=color_map
|
179 |
)
|
180 |
-
# Update hover text to show the model and GPU Energy (with 4 decimals)
|
181 |
fig.update_traces(
|
182 |
hovertemplate="<br>".join([
|
183 |
"Model: %{x}",
|
@@ -188,13 +158,45 @@ def get_text_generation_plots(model_class):
|
|
188 |
fig.update_layout(
|
189 |
xaxis_title="Model",
|
190 |
yaxis_title="GPU Energy (Wh)",
|
191 |
-
yaxis_tickformat=".4f", # Add this line to format y-axis ticks
|
192 |
yaxis = dict(
|
193 |
-
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well
|
194 |
)
|
195 |
)
|
196 |
return fig
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
def get_text_generation_model_names(model_class):
|
199 |
df = pd.read_csv('data/energy/text_generation.csv')
|
200 |
if df.columns[0].startswith("Unnamed:"):
|
@@ -243,12 +245,12 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
243 |
# Dropdown moved above the plot and leaderboard
|
244 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
245 |
label="Select Model Class",
|
246 |
-
value="
|
247 |
with gr.Row():
|
248 |
with gr.Column(scale=1.3):
|
249 |
-
tg_plot = gr.Plot(get_text_generation_plots("
|
250 |
with gr.Column(scale=1):
|
251 |
-
tg_table = gr.Dataframe(get_text_generation_model_names("
|
252 |
# Update plot and table when the dropdown value changes
|
253 |
model_class_dropdown.change(fn=update_text_generation,
|
254 |
inputs=model_class_dropdown,
|
|
|
38 |
display_name = parts[1] if len(parts) > 1 else mname
|
39 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
40 |
|
41 |
+
# --- Plot Functions (Bar Chart) ---
|
42 |
|
43 |
def get_plots(task):
|
44 |
df = pd.read_csv('data/energy/' + task)
|
|
|
53 |
# Use the energy score to control color
|
54 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
55 |
|
56 |
+
# Now plot as a bar chart
|
57 |
+
fig = px.bar(
|
58 |
df,
|
59 |
x="Display Model",
|
60 |
y="total_gpu_energy",
|
|
|
75 |
fig.update_layout(
|
76 |
xaxis_title="Model",
|
77 |
yaxis_title="GPU Energy (Wh)",
|
78 |
+
yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart
|
79 |
yaxis = dict(
|
80 |
+
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart
|
81 |
)
|
82 |
)
|
83 |
return fig
|
|
|
96 |
|
97 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
98 |
|
99 |
+
fig = px.bar(
|
100 |
all_df,
|
101 |
x="Display Model",
|
102 |
y="total_gpu_energy",
|
|
|
116 |
fig.update_layout(
|
117 |
xaxis_title="Model",
|
118 |
yaxis_title="GPU Energy (Wh)",
|
119 |
+
yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart
|
120 |
yaxis = dict(
|
121 |
+
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart
|
122 |
)
|
123 |
)
|
124 |
return fig
|
125 |
|
126 |
+
# --- New functions for Text Generation filtering by model class (with Bar Chart) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def get_text_generation_plots(model_class):
|
129 |
df = pd.read_csv('data/energy/text_generation.csv')
|
|
|
138 |
|
139 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
140 |
|
141 |
+
fig = px.bar(
|
142 |
df,
|
143 |
x="Display Model",
|
144 |
y="total_gpu_energy",
|
|
|
148 |
width=800,
|
149 |
color_discrete_map=color_map
|
150 |
)
|
|
|
151 |
fig.update_traces(
|
152 |
hovertemplate="<br>".join([
|
153 |
"Model: %{x}",
|
|
|
158 |
fig.update_layout(
|
159 |
xaxis_title="Model",
|
160 |
yaxis_title="GPU Energy (Wh)",
|
161 |
+
yaxis_tickformat=".4f", # Add this line to format y-axis ticks - might not be needed for bar chart
|
162 |
yaxis = dict(
|
163 |
+
tickformat=".4f" # Ensure tickformat is set within yaxis dict as well - might not be needed for bar chart
|
164 |
)
|
165 |
)
|
166 |
return fig
|
167 |
|
168 |
+
|
169 |
+
# --- Leaderboard Table Functions and Gradio Interface are unchanged ---
|
170 |
+
# (Keep the rest of the code same as previous response)
|
171 |
+
|
172 |
+
def get_model_names(task):
|
173 |
+
df = pd.read_csv('data/energy/' + task)
|
174 |
+
if df.columns[0].startswith("Unnamed:"):
|
175 |
+
df = df.iloc[:, 1:]
|
176 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
177 |
+
# For leaderboard display, format GPU Energy to 4 decimals
|
178 |
+
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
|
179 |
+
df['Model'] = df['model'].apply(make_link)
|
180 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
181 |
+
# Remove any Class column if it exists
|
182 |
+
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
183 |
+
df = df.sort_values(by='GPU Energy (Wh)')
|
184 |
+
return df
|
185 |
+
|
186 |
+
def get_all_model_names():
|
187 |
+
all_df = pd.DataFrame()
|
188 |
+
for task in tasks:
|
189 |
+
df = pd.read_csv('data/energy/' + task)
|
190 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
191 |
+
df['GPU Energy (Wh)'] = pd.to_numeric(df['total_gpu_energy'], errors='raise').apply(lambda x: f"{x:.4f}")
|
192 |
+
df['Model'] = df['model'].apply(make_link)
|
193 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
194 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
195 |
+
all_df = all_df.drop_duplicates(subset=['model'])
|
196 |
+
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
197 |
+
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
198 |
+
|
199 |
+
|
200 |
def get_text_generation_model_names(model_class):
|
201 |
df = pd.read_csv('data/energy/text_generation.csv')
|
202 |
if df.columns[0].startswith("Unnamed:"):
|
|
|
245 |
# Dropdown moved above the plot and leaderboard
|
246 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
247 |
label="Select Model Class",
|
248 |
+
value="A")
|
249 |
with gr.Row():
|
250 |
with gr.Column(scale=1.3):
|
251 |
+
tg_plot = gr.Plot(get_text_generation_plots("A"))
|
252 |
with gr.Column(scale=1):
|
253 |
+
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown")
|
254 |
# Update plot and table when the dropdown value changes
|
255 |
model_class_dropdown.change(fn=update_text_generation,
|
256 |
inputs=model_class_dropdown,
|