Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,10 +39,10 @@ def make_link(mname):
|
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
41 |
|
42 |
-
# --- Leaderboard Table Functions (
|
43 |
|
44 |
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
|
45 |
-
"""Generates HTML for the minimal bar chart
|
46 |
if max_energy_value <= 0: # Avoid division by zero if max energy is 0 or negative
|
47 |
bar_percentage = 0
|
48 |
else:
|
@@ -69,12 +69,11 @@ def get_model_names(task):
|
|
69 |
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
|
70 |
|
71 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
|
72 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task), axis=1)
|
73 |
|
74 |
df['Model'] = df['model'].apply(make_link)
|
75 |
df['Score'] = df['energy_score'].apply(format_stars)
|
76 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
|
77 |
-
# df = df.drop('total_gpu_energy', axis=1) # REMOVED redundant drop
|
78 |
return df
|
79 |
|
80 |
def get_all_model_names():
|
@@ -92,11 +91,10 @@ def get_all_model_names():
|
|
92 |
max_energy_overall = all_df['total_gpu_energy'].max() # Calculate overall max AFTER sorting
|
93 |
|
94 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
|
95 |
-
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall), axis=1)
|
96 |
all_df['Model'] = all_df['model'].apply(make_link)
|
97 |
all_df['Score'] = all_df['energy_score'].apply(format_stars)
|
98 |
all_df = all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
99 |
-
# all_df = all_df.drop('total_gpu_energy', axis=1) # REMOVED redundant drop
|
100 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
101 |
|
102 |
|
@@ -113,19 +111,18 @@ def get_text_generation_model_names(model_class):
|
|
113 |
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
|
114 |
|
115 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
|
116 |
-
df['GPU Energy (Wh)'] = df.apply(lambda row: create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class), axis=1)
|
117 |
|
118 |
df['Model'] = df['model'].apply(make_link)
|
119 |
df['Score'] = df['energy_score'].apply(format_stars)
|
120 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
|
121 |
-
# df = df.drop('total_gpu_energy', axis=1) # REMOVED redundant drop
|
122 |
return df
|
123 |
|
124 |
def update_text_generation(model_class):
|
125 |
table = get_text_generation_model_names(model_class)
|
126 |
return table
|
127 |
|
128 |
-
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars) ---
|
129 |
|
130 |
demo = gr.Blocks(css="""
|
131 |
.gr-dataframe table {
|
@@ -165,41 +162,41 @@ Select different tasks to see scored models. Submit open models for testing and
|
|
165 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
166 |
label="Select Model Class",
|
167 |
value="A")
|
168 |
-
tg_table = gr.Dataframe(get_text_generation_model_names("A")
|
169 |
# Update table when the dropdown value changes
|
170 |
model_class_dropdown.change(fn=update_text_generation,
|
171 |
inputs=model_class_dropdown,
|
172 |
outputs=[tg_table])
|
173 |
|
174 |
with gr.TabItem("Image Generation 📷"):
|
175 |
-
table = gr.Dataframe(get_model_names('image_generation.csv')
|
176 |
|
177 |
with gr.TabItem("Text Classification 🎭"):
|
178 |
-
table = gr.Dataframe(get_model_names('text_classification.csv')
|
179 |
|
180 |
with gr.TabItem("Image Classification 🖼️"):
|
181 |
-
table = gr.Dataframe(get_model_names('image_classification.csv')
|
182 |
|
183 |
with gr.TabItem("Image Captioning 📝"):
|
184 |
-
table = gr.Dataframe(get_model_names('image_captioning.csv')
|
185 |
|
186 |
with gr.TabItem("Summarization 📃"):
|
187 |
-
table = gr.Dataframe(get_model_names('summarization.csv')
|
188 |
|
189 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
190 |
-
table = gr.Dataframe(get_model_names('asr.csv')
|
191 |
|
192 |
with gr.TabItem("Object Detection 🚘"):
|
193 |
-
table = gr.Dataframe(get_model_names('object_detection.csv')
|
194 |
|
195 |
with gr.TabItem("Sentence Similarity 📚"):
|
196 |
-
table = gr.Dataframe(get_model_names('sentence_similarity.csv')
|
197 |
|
198 |
with gr.TabItem("Extractive QA ❔"):
|
199 |
-
table = gr.Dataframe(get_model_names('question_answering.csv')
|
200 |
|
201 |
with gr.TabItem("All Tasks 💡"):
|
202 |
-
table = gr.Dataframe(get_all_model_names()
|
203 |
|
204 |
with gr.Accordion("📙 Citation", open=False):
|
205 |
citation_button = gr.Textbox(
|
|
|
39 |
display_name = parts[1] if len(parts) > 1 else mname
|
40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
41 |
|
42 |
+
# --- Leaderboard Table Functions (Using gr.HTML Component) ---
|
43 |
|
44 |
def create_minimal_bar_html(energy_value_wh, energy_score, max_energy_value):
|
45 |
+
"""Generates HTML for the minimal bar chart."""
|
46 |
if max_energy_value <= 0: # Avoid division by zero if max energy is 0 or negative
|
47 |
bar_percentage = 0
|
48 |
else:
|
|
|
69 |
max_energy_for_task = df['total_gpu_energy'].max() # Calculate max energy for this task
|
70 |
|
71 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_task
|
72 |
+
df['GPU Energy (Wh)'] = df.apply(lambda row: gr.HTML(create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_task)), axis=1)
|
73 |
|
74 |
df['Model'] = df['model'].apply(make_link)
|
75 |
df['Score'] = df['energy_score'].apply(format_stars)
|
76 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
|
|
|
77 |
return df
|
78 |
|
79 |
def get_all_model_names():
|
|
|
91 |
max_energy_overall = all_df['total_gpu_energy'].max() # Calculate overall max AFTER sorting
|
92 |
|
93 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_overall
|
94 |
+
all_df['GPU Energy (Wh)'] = all_df.apply(lambda row: gr.HTML(create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_overall)), axis=1)
|
95 |
all_df['Model'] = all_df['model'].apply(make_link)
|
96 |
all_df['Score'] = all_df['energy_score'].apply(format_stars)
|
97 |
all_df = all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
|
|
98 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
99 |
|
100 |
|
|
|
111 |
max_energy_for_class = df['total_gpu_energy'].max() # Calculate max energy for this class
|
112 |
|
113 |
# Create HTML bar chart for GPU Energy column, passing dynamic max_energy_for_class
|
114 |
+
df['GPU Energy (Wh)'] = df.apply(lambda row: gr.HTML(create_minimal_bar_html(row['total_gpu_energy'], row['energy_score'], max_energy_for_class)), axis=1)
|
115 |
|
116 |
df['Model'] = df['model'].apply(make_link)
|
117 |
df['Score'] = df['energy_score'].apply(format_stars)
|
118 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']] # Keep only these columns
|
|
|
119 |
return df
|
120 |
|
121 |
def update_text_generation(model_class):
|
122 |
table = get_text_generation_model_names(model_class)
|
123 |
return table
|
124 |
|
125 |
+
# --- Build the Gradio Interface (Plots Removed, Tables with Dynamic Bars using gr.HTML) ---
|
126 |
|
127 |
demo = gr.Blocks(css="""
|
128 |
.gr-dataframe table {
|
|
|
162 |
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
163 |
label="Select Model Class",
|
164 |
value="A")
|
165 |
+
tg_table = gr.Dataframe(get_text_generation_model_names("A")) # No datatype="markdown" here
|
166 |
# Update table when the dropdown value changes
|
167 |
model_class_dropdown.change(fn=update_text_generation,
|
168 |
inputs=model_class_dropdown,
|
169 |
outputs=[tg_table])
|
170 |
|
171 |
with gr.TabItem("Image Generation 📷"):
|
172 |
+
table = gr.Dataframe(get_model_names('image_generation.csv')) # No datatype="markdown" here
|
173 |
|
174 |
with gr.TabItem("Text Classification 🎭"):
|
175 |
+
table = gr.Dataframe(get_model_names('text_classification.csv')) # No datatype="markdown" here
|
176 |
|
177 |
with gr.TabItem("Image Classification 🖼️"):
|
178 |
+
table = gr.Dataframe(get_model_names('image_classification.csv')) # No datatype="markdown" here
|
179 |
|
180 |
with gr.TabItem("Image Captioning 📝"):
|
181 |
+
table = gr.Dataframe(get_model_names('image_captioning.csv')) # No datatype="markdown" here
|
182 |
|
183 |
with gr.TabItem("Summarization 📃"):
|
184 |
+
table = gr.Dataframe(get_model_names('summarization.csv')) # No datatype="markdown" here
|
185 |
|
186 |
with gr.TabItem("Automatic Speech Recognition 💬"):
|
187 |
+
table = gr.Dataframe(get_model_names('asr.csv')) # No datatype="markdown" here
|
188 |
|
189 |
with gr.TabItem("Object Detection 🚘"):
|
190 |
+
table = gr.Dataframe(get_model_names('object_detection.csv')) # No datatype="markdown" here
|
191 |
|
192 |
with gr.TabItem("Sentence Similarity 📚"):
|
193 |
+
table = gr.Dataframe(get_model_names('sentence_similarity.csv')) # No datatype="markdown" here
|
194 |
|
195 |
with gr.TabItem("Extractive QA ❔"):
|
196 |
+
table = gr.Dataframe(get_model_names('question_answering.csv')) # No datatype="markdown" here
|
197 |
|
198 |
with gr.TabItem("All Tasks 💡"):
|
199 |
+
table = gr.Dataframe(get_all_model_names()) # No datatype="markdown" here
|
200 |
|
201 |
with gr.Accordion("📙 Citation", open=False):
|
202 |
citation_button = gr.Textbox(
|