Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,12 @@ import pandas as pd
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
6 |
-
CITATION_BUTTON_TEXT = r"""@misc{
|
7 |
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
|
8 |
-
title = {AI Energy Score Leaderboard
|
9 |
-
year = {
|
10 |
publisher = {Hugging Face},
|
11 |
-
howpublished = "\url{https://huggingface.co/spaces/
|
12 |
}"""
|
13 |
|
14 |
# List of tasks (CSV filenames)
|
@@ -28,17 +28,18 @@ tasks = [
|
|
28 |
def format_stars(score):
|
29 |
"""
|
30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
31 |
-
into that many star characters wrapped in a span with
|
|
|
32 |
"""
|
33 |
try:
|
34 |
score_int = int(score)
|
35 |
except Exception:
|
36 |
score_int = 0
|
37 |
-
return f'<span style="color: #3fa45bff; font-size:
|
38 |
|
39 |
def make_link(mname):
|
40 |
"""
|
41 |
-
Create a markdown link
|
42 |
For example, if mname is "org/model", display "model" and link to its HF page.
|
43 |
"""
|
44 |
parts = str(mname).split('/')
|
@@ -48,13 +49,13 @@ def make_link(mname):
|
|
48 |
def get_plots(task):
|
49 |
"""
|
50 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
51 |
-
|
|
|
52 |
"""
|
53 |
df = pd.read_csv('data/energy/' + task)
|
54 |
-
# Ensure energy_score is an integer (for discrete color mapping)
|
55 |
df['energy_score'] = df['energy_score'].astype(int)
|
56 |
-
#
|
57 |
-
df['
|
58 |
|
59 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
60 |
color_map = {
|
@@ -65,10 +66,11 @@ def get_plots(task):
|
|
65 |
5: "green"
|
66 |
}
|
67 |
|
|
|
68 |
fig = px.scatter(
|
69 |
df,
|
70 |
-
x="
|
71 |
-
y="
|
72 |
custom_data=['energy_score'],
|
73 |
height=500,
|
74 |
width=800,
|
@@ -77,24 +79,24 @@ def get_plots(task):
|
|
77 |
)
|
78 |
fig.update_traces(
|
79 |
hovertemplate="<br>".join([
|
80 |
-
"Model: %{
|
81 |
-
"
|
82 |
"Energy Score: %{customdata[0]}"
|
83 |
])
|
84 |
)
|
85 |
-
fig.update_layout(xaxis_title="
|
86 |
return fig
|
87 |
|
88 |
def get_all_plots():
|
89 |
"""
|
90 |
Combine data from all tasks and return a scatter plot.
|
91 |
-
Duplicate models
|
92 |
"""
|
93 |
all_df = pd.DataFrame()
|
94 |
for task in tasks:
|
95 |
df = pd.read_csv('data/energy/' + task)
|
96 |
df['energy_score'] = df['energy_score'].astype(int)
|
97 |
-
df['
|
98 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
99 |
all_df = all_df.drop_duplicates(subset=['model'])
|
100 |
|
@@ -107,8 +109,8 @@ def get_all_plots():
|
|
107 |
}
|
108 |
fig = px.scatter(
|
109 |
all_df,
|
110 |
-
x="
|
111 |
-
y="
|
112 |
custom_data=['energy_score'],
|
113 |
height=500,
|
114 |
width=800,
|
@@ -117,59 +119,68 @@ def get_all_plots():
|
|
117 |
)
|
118 |
fig.update_traces(
|
119 |
hovertemplate="<br>".join([
|
120 |
-
"Model: %{
|
121 |
-
"
|
122 |
"Energy Score: %{customdata[0]}"
|
123 |
])
|
124 |
)
|
125 |
-
fig.update_layout(xaxis_title="
|
126 |
return fig
|
127 |
|
128 |
def get_model_names(task):
|
129 |
"""
|
130 |
-
For a given task, load the energy CSV and return a dataframe with
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
"""
|
135 |
df = pd.read_csv('data/energy/' + task)
|
136 |
df['energy_score'] = df['energy_score'].astype(int)
|
137 |
-
df['
|
138 |
df['Model'] = df['model'].apply(make_link)
|
139 |
-
df['
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
def get_all_model_names():
|
145 |
"""
|
146 |
-
Combine data from all tasks and return a table
|
|
|
147 |
Duplicate models are dropped.
|
148 |
"""
|
149 |
all_df = pd.DataFrame()
|
150 |
for task in tasks:
|
151 |
df = pd.read_csv('data/energy/' + task)
|
152 |
df['energy_score'] = df['energy_score'].astype(int)
|
153 |
-
df['
|
154 |
df['Model'] = df['model'].apply(make_link)
|
155 |
-
df['
|
156 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
157 |
all_df = all_df.drop_duplicates(subset=['model'])
|
158 |
-
all_df = all_df.sort_values(by='
|
159 |
-
|
160 |
-
return model_names
|
161 |
|
162 |
# Build the Gradio interface.
|
163 |
demo = gr.Blocks()
|
164 |
|
165 |
with demo:
|
166 |
gr.Markdown(
|
167 |
-
"""# AI Energy Score Leaderboard
|
168 |
-
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/
|
169 |
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
|
170 |
)
|
171 |
gr.Markdown(
|
172 |
-
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)
|
173 |
)
|
174 |
|
175 |
with gr.Tabs():
|
@@ -178,6 +189,7 @@ Click through the tasks below to see how different models measure up in terms of
|
|
178 |
with gr.Column(scale=1.3):
|
179 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
180 |
with gr.Column(scale=1):
|
|
|
181 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
182 |
|
183 |
with gr.TabItem("Image Generation 📷"):
|
@@ -262,4 +274,4 @@ Click through the tasks below to see how different models measure up in terms of
|
|
262 |
"""Last updated: February 2025"""
|
263 |
)
|
264 |
|
265 |
-
demo.launch()
|
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
6 |
+
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
|
7 |
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
|
8 |
+
title = {AI Energy Score Leaderboard - February 2025},
|
9 |
+
year = {2025},
|
10 |
publisher = {Hugging Face},
|
11 |
+
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
12 |
}"""
|
13 |
|
14 |
# List of tasks (CSV filenames)
|
|
|
28 |
def format_stars(score):
|
29 |
"""
|
30 |
Convert the energy_score (assumed to be an integer from 1 to 5)
|
31 |
+
into that many star characters wrapped in a span styled with color #3fa45bff
|
32 |
+
and with a font size increased to 2em.
|
33 |
"""
|
34 |
try:
|
35 |
score_int = int(score)
|
36 |
except Exception:
|
37 |
score_int = 0
|
38 |
+
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
39 |
|
40 |
def make_link(mname):
|
41 |
"""
|
42 |
+
Create a markdown link for the model.
|
43 |
For example, if mname is "org/model", display "model" and link to its HF page.
|
44 |
"""
|
45 |
parts = str(mname).split('/')
|
|
|
49 |
def get_plots(task):
|
50 |
"""
|
51 |
Read the energy CSV for a given task and return a Plotly scatter plot.
|
52 |
+
Now the x-axis is the numeric energy (GPU Energy (Wh)) and
|
53 |
+
the y-axis displays the model name.
|
54 |
"""
|
55 |
df = pd.read_csv('data/energy/' + task)
|
|
|
56 |
df['energy_score'] = df['energy_score'].astype(int)
|
57 |
+
# Do not multiply by 1000; simply round to 4 decimals
|
58 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
59 |
|
60 |
# Define a 5-level color mapping: 1 = red, 5 = green.
|
61 |
color_map = {
|
|
|
66 |
5: "green"
|
67 |
}
|
68 |
|
69 |
+
# Create a horizontal scatter plot: x is the energy, y is the model.
|
70 |
fig = px.scatter(
|
71 |
df,
|
72 |
+
x="GPU Energy (Wh)",
|
73 |
+
y="model",
|
74 |
custom_data=['energy_score'],
|
75 |
height=500,
|
76 |
width=800,
|
|
|
79 |
)
|
80 |
fig.update_traces(
|
81 |
hovertemplate="<br>".join([
|
82 |
+
"Model: %{y}",
|
83 |
+
"GPU Energy (Wh): %{x}",
|
84 |
"Energy Score: %{customdata[0]}"
|
85 |
])
|
86 |
)
|
87 |
+
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
88 |
return fig
|
89 |
|
90 |
def get_all_plots():
|
91 |
"""
|
92 |
Combine data from all tasks and return a scatter plot.
|
93 |
+
Duplicate models are dropped.
|
94 |
"""
|
95 |
all_df = pd.DataFrame()
|
96 |
for task in tasks:
|
97 |
df = pd.read_csv('data/energy/' + task)
|
98 |
df['energy_score'] = df['energy_score'].astype(int)
|
99 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
100 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
101 |
all_df = all_df.drop_duplicates(subset=['model'])
|
102 |
|
|
|
109 |
}
|
110 |
fig = px.scatter(
|
111 |
all_df,
|
112 |
+
x="GPU Energy (Wh)",
|
113 |
+
y="model",
|
114 |
custom_data=['energy_score'],
|
115 |
height=500,
|
116 |
width=800,
|
|
|
119 |
)
|
120 |
fig.update_traces(
|
121 |
hovertemplate="<br>".join([
|
122 |
+
"Model: %{y}",
|
123 |
+
"GPU Energy (Wh): %{x}",
|
124 |
"Energy Score: %{customdata[0]}"
|
125 |
])
|
126 |
)
|
127 |
+
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
128 |
return fig
|
129 |
|
130 |
def get_model_names(task):
|
131 |
"""
|
132 |
+
For a given task, load the energy CSV and return a dataframe with the following columns:
|
133 |
+
- Model (a markdown link)
|
134 |
+
- GPU Energy (Wh)
|
135 |
+
- Score (a star rating based on energy_score)
|
136 |
+
For text_generation.csv only, also add the "Class" column from the CSV.
|
137 |
+
The final order is: Model, GPU Energy (Wh), Score, [Class].
|
138 |
"""
|
139 |
df = pd.read_csv('data/energy/' + task)
|
140 |
df['energy_score'] = df['energy_score'].astype(int)
|
141 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
142 |
df['Model'] = df['model'].apply(make_link)
|
143 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
144 |
+
|
145 |
+
# If this CSV contains a "class" column (e.g., for Text Generation), add it.
|
146 |
+
if 'class' in df.columns:
|
147 |
+
df['Class'] = df['class']
|
148 |
+
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
149 |
+
else:
|
150 |
+
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
151 |
+
|
152 |
+
df = df.sort_values(by='GPU Energy (Wh)')
|
153 |
+
return df
|
154 |
|
155 |
def get_all_model_names():
|
156 |
"""
|
157 |
+
Combine data from all tasks and return a leaderboard table with:
|
158 |
+
- Model, GPU Energy (Wh), Score
|
159 |
Duplicate models are dropped.
|
160 |
"""
|
161 |
all_df = pd.DataFrame()
|
162 |
for task in tasks:
|
163 |
df = pd.read_csv('data/energy/' + task)
|
164 |
df['energy_score'] = df['energy_score'].astype(int)
|
165 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].round(4)
|
166 |
df['Model'] = df['model'].apply(make_link)
|
167 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
168 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
169 |
all_df = all_df.drop_duplicates(subset=['model'])
|
170 |
+
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
171 |
+
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
|
|
172 |
|
173 |
# Build the Gradio interface.
|
174 |
demo = gr.Blocks()
|
175 |
|
176 |
with demo:
|
177 |
gr.Markdown(
|
178 |
+
"""# AI Energy Score Leaderboard
|
179 |
+
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
|
180 |
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
|
181 |
)
|
182 |
gr.Markdown(
|
183 |
+
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
|
184 |
)
|
185 |
|
186 |
with gr.Tabs():
|
|
|
189 |
with gr.Column(scale=1.3):
|
190 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
191 |
with gr.Column(scale=1):
|
192 |
+
# For text generation, the CSV is assumed to have a "class" column.
|
193 |
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
|
194 |
|
195 |
with gr.TabItem("Image Generation 📷"):
|
|
|
274 |
"""Last updated: February 2025"""
|
275 |
)
|
276 |
|
277 |
+
demo.launch()
|