Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -37,16 +37,9 @@ def make_link(mname):
|
|
37 |
display_name = parts[1] if len(parts) > 1 else mname
|
38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
39 |
|
40 |
-
def read_csv_drop_extra(task):
|
41 |
-
"""Helper to load CSV and drop the first column if necessary."""
|
42 |
-
df = pd.read_csv('data/energy/' + task)
|
43 |
-
# If the expected "total_gpu_energy" column is missing, drop the first column.
|
44 |
-
if "total_gpu_energy" not in df.columns:
|
45 |
-
df = df.iloc[:, 1:]
|
46 |
-
return df
|
47 |
-
|
48 |
def get_plots(task):
|
49 |
-
|
|
|
50 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
51 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
52 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
@@ -55,9 +48,9 @@ def get_plots(task):
|
|
55 |
|
56 |
fig = px.scatter(
|
57 |
df,
|
58 |
-
x="total_gpu_energy",
|
59 |
y="Display Model",
|
60 |
-
color="energy_score",
|
61 |
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
62 |
height=500,
|
63 |
width=800,
|
@@ -80,7 +73,7 @@ def get_plots(task):
|
|
80 |
def get_all_plots():
|
81 |
all_df = pd.DataFrame()
|
82 |
for task in tasks:
|
83 |
-
df =
|
84 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
85 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
86 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
@@ -121,7 +114,7 @@ def get_model_names(task):
|
|
121 |
- Score (a star rating based on energy_score)
|
122 |
For text_generation.csv only, also add the "Class" column if present.
|
123 |
"""
|
124 |
-
df =
|
125 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
126 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
127 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
@@ -134,7 +127,7 @@ def get_model_names(task):
|
|
134 |
else:
|
135 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
136 |
|
137 |
-
#
|
138 |
df = df.sort_values(by='total_gpu_energy')
|
139 |
return df
|
140 |
|
@@ -146,7 +139,7 @@ def get_all_model_names():
|
|
146 |
"""
|
147 |
all_df = pd.DataFrame()
|
148 |
for task in tasks:
|
149 |
-
df =
|
150 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
151 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
152 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
@@ -184,7 +177,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
184 |
with gr.Tabs():
|
185 |
with gr.TabItem("Text Generation 💬"):
|
186 |
with gr.Row():
|
187 |
-
# Changed scale to an integer (2 vs 1) to avoid warnings.
|
188 |
with gr.Column(scale=2):
|
189 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
190 |
with gr.Column(scale=1):
|
|
|
37 |
display_name = parts[1] if len(parts) > 1 else mname
|
38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def get_plots(task):
|
41 |
+
# Read CSV using the first column as index so that only the useful columns remain.
|
42 |
+
df = pd.read_csv('data/energy/' + task, index_col=0)
|
43 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
44 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
45 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
|
48 |
|
49 |
fig = px.scatter(
|
50 |
df,
|
51 |
+
x="total_gpu_energy",
|
52 |
y="Display Model",
|
53 |
+
color="energy_score",
|
54 |
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
55 |
height=500,
|
56 |
width=800,
|
|
|
73 |
def get_all_plots():
|
74 |
all_df = pd.DataFrame()
|
75 |
for task in tasks:
|
76 |
+
df = pd.read_csv('data/energy/' + task, index_col=0)
|
77 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
78 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
79 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
|
|
114 |
- Score (a star rating based on energy_score)
|
115 |
For text_generation.csv only, also add the "Class" column if present.
|
116 |
"""
|
117 |
+
df = pd.read_csv('data/energy/' + task, index_col=0)
|
118 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
119 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
120 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
|
127 |
else:
|
128 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
129 |
|
130 |
+
# Now sort by the numeric value in total_gpu_energy.
|
131 |
df = df.sort_values(by='total_gpu_energy')
|
132 |
return df
|
133 |
|
|
|
139 |
"""
|
140 |
all_df = pd.DataFrame()
|
141 |
for task in tasks:
|
142 |
+
df = pd.read_csv('data/energy/' + task, index_col=0)
|
143 |
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
144 |
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
145 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
|
|
177 |
with gr.Tabs():
|
178 |
with gr.TabItem("Text Generation 💬"):
|
179 |
with gr.Row():
|
|
|
180 |
with gr.Column(scale=2):
|
181 |
plot = gr.Plot(get_plots('text_generation.csv'))
|
182 |
with gr.Column(scale=1):
|