Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,22 +39,21 @@ def make_link(mname):
|
|
39 |
|
40 |
def get_plots(task):
|
41 |
df = pd.read_csv('data/energy/' + task)
|
42 |
-
# Remove extra unnamed column if present
|
43 |
if df.columns[0].startswith("Unnamed:"):
|
44 |
df = df.iloc[:, 1:]
|
45 |
-
|
46 |
-
|
|
|
47 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
48 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
49 |
|
50 |
-
# Update color_map keys to be strings
|
51 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
52 |
|
53 |
fig = px.scatter(
|
54 |
df,
|
55 |
-
x="total_gpu_energy",
|
56 |
-
y="Display Model",
|
57 |
-
color="energy_score",
|
58 |
custom_data=['energy_score'],
|
59 |
height=500,
|
60 |
width=800,
|
@@ -76,7 +75,7 @@ def get_all_plots():
|
|
76 |
df = pd.read_csv('data/energy/' + task)
|
77 |
if df.columns[0].startswith("Unnamed:"):
|
78 |
df = df.iloc[:, 1:]
|
79 |
-
|
80 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
81 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
82 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
@@ -86,9 +85,9 @@ def get_all_plots():
|
|
86 |
|
87 |
fig = px.scatter(
|
88 |
all_df,
|
89 |
-
x="total_gpu_energy",
|
90 |
y="Display Model",
|
91 |
-
color="energy_score",
|
92 |
custom_data=['energy_score'],
|
93 |
height=500,
|
94 |
width=800,
|
@@ -105,20 +104,11 @@ def get_all_plots():
|
|
105 |
return fig
|
106 |
|
107 |
def get_model_names(task):
|
108 |
-
"""
|
109 |
-
For a given task, load the energy CSV and return a dataframe with the following columns:
|
110 |
-
- Model (a markdown link)
|
111 |
-
- GPU Energy (Wh) formatted as a string with 4 decimal places
|
112 |
-
- Score (a star rating based on energy_score)
|
113 |
-
For text_generation.csv only, also add the "Class" column from the CSV.
|
114 |
-
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
115 |
-
"""
|
116 |
df = pd.read_csv('data/energy/' + task)
|
117 |
if df.columns[0].startswith("Unnamed:"):
|
118 |
df = df.iloc[:, 1:]
|
119 |
df['energy_score'] = df['energy_score'].astype(int)
|
120 |
-
|
121 |
-
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
122 |
df['Model'] = df['model'].apply(make_link)
|
123 |
df['Score'] = df['energy_score'].apply(format_stars)
|
124 |
|
@@ -132,16 +122,11 @@ def get_model_names(task):
|
|
132 |
return df
|
133 |
|
134 |
def get_all_model_names():
|
135 |
-
"""
|
136 |
-
Combine data from all tasks and return a leaderboard table with:
|
137 |
-
- Model, GPU Energy (Wh), Score
|
138 |
-
Duplicate models are dropped.
|
139 |
-
"""
|
140 |
all_df = pd.DataFrame()
|
141 |
for task in tasks:
|
142 |
df = pd.read_csv('data/energy/' + task)
|
143 |
df['energy_score'] = df['energy_score'].astype(int)
|
144 |
-
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
145 |
df['Model'] = df['model'].apply(make_link)
|
146 |
df['Score'] = df['energy_score'].apply(format_stars)
|
147 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
@@ -149,8 +134,64 @@ def get_all_model_names():
|
|
149 |
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
150 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
151 |
|
152 |
-
#
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
demo = gr.Blocks(css="""
|
155 |
.gr-dataframe table {
|
156 |
table-layout: fixed;
|
@@ -175,13 +216,20 @@ Click through the tasks below to see how different models measure up in terms of
|
|
175 |
)
|
176 |
|
177 |
with gr.Tabs():
|
|
|
178 |
with gr.TabItem("Text Generation 💬"):
|
179 |
with gr.Row():
|
180 |
with gr.Column(scale=1.3):
|
181 |
-
|
182 |
with gr.Column(scale=1):
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
with gr.TabItem("Image Generation 📷"):
|
186 |
with gr.Row():
|
187 |
with gr.Column():
|
@@ -248,7 +296,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
248 |
with gr.TabItem("All Tasks 💡"):
|
249 |
with gr.Row():
|
250 |
with gr.Column():
|
251 |
-
# Call the functions to generate the plot and table
|
252 |
plot = gr.Plot(get_all_plots())
|
253 |
with gr.Column():
|
254 |
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
|
|
|
39 |
|
40 |
def get_plots(task):
|
41 |
df = pd.read_csv('data/energy/' + task)
|
|
|
42 |
if df.columns[0].startswith("Unnamed:"):
|
43 |
df = df.iloc[:, 1:]
|
44 |
+
# Ensure total_gpu_energy is a float so that values are not misinterpreted
|
45 |
+
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
46 |
+
# Convert energy_score to a categorical string for discrete coloring
|
47 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
48 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
49 |
|
|
|
50 |
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
51 |
|
52 |
fig = px.scatter(
|
53 |
df,
|
54 |
+
x="total_gpu_energy",
|
55 |
+
y="Display Model",
|
56 |
+
color="energy_score",
|
57 |
custom_data=['energy_score'],
|
58 |
height=500,
|
59 |
width=800,
|
|
|
75 |
df = pd.read_csv('data/energy/' + task)
|
76 |
if df.columns[0].startswith("Unnamed:"):
|
77 |
df = df.iloc[:, 1:]
|
78 |
+
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
79 |
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
80 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
81 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
|
85 |
|
86 |
fig = px.scatter(
|
87 |
all_df,
|
88 |
+
x="total_gpu_energy",
|
89 |
y="Display Model",
|
90 |
+
color="energy_score",
|
91 |
custom_data=['energy_score'],
|
92 |
height=500,
|
93 |
width=800,
|
|
|
104 |
return fig
|
105 |
|
106 |
def get_model_names(task):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
df = pd.read_csv('data/energy/' + task)
|
108 |
if df.columns[0].startswith("Unnamed:"):
|
109 |
df = df.iloc[:, 1:]
|
110 |
df['energy_score'] = df['energy_score'].astype(int)
|
111 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].astype(float).apply(lambda x: f"{x:.4f}")
|
|
|
112 |
df['Model'] = df['model'].apply(make_link)
|
113 |
df['Score'] = df['energy_score'].apply(format_stars)
|
114 |
|
|
|
122 |
return df
|
123 |
|
124 |
def get_all_model_names():
|
|
|
|
|
|
|
|
|
|
|
125 |
all_df = pd.DataFrame()
|
126 |
for task in tasks:
|
127 |
df = pd.read_csv('data/energy/' + task)
|
128 |
df['energy_score'] = df['energy_score'].astype(int)
|
129 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].astype(float).apply(lambda x: f"{x:.4f}")
|
130 |
df['Model'] = df['model'].apply(make_link)
|
131 |
df['Score'] = df['energy_score'].apply(format_stars)
|
132 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
|
|
134 |
all_df = all_df.sort_values(by='GPU Energy (Wh)')
|
135 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
136 |
|
137 |
+
# === New functions for Text Generation filtering by model class ===
|
138 |
+
def get_text_generation_plots(model_class):
|
139 |
+
df = pd.read_csv('data/energy/text_generation.csv')
|
140 |
+
if df.columns[0].startswith("Unnamed:"):
|
141 |
+
df = df.iloc[:, 1:]
|
142 |
+
# Filter to the selected model class (if a "class" column exists)
|
143 |
+
if 'class' in df.columns:
|
144 |
+
df = df[df['class'] == model_class]
|
145 |
+
df['total_gpu_energy'] = df['total_gpu_energy'].astype(float)
|
146 |
+
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
147 |
+
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
148 |
+
|
149 |
+
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
150 |
+
|
151 |
+
fig = px.scatter(
|
152 |
+
df,
|
153 |
+
x="total_gpu_energy",
|
154 |
+
y="Display Model",
|
155 |
+
color="energy_score",
|
156 |
+
custom_data=['energy_score'],
|
157 |
+
height=500,
|
158 |
+
width=800,
|
159 |
+
color_discrete_map=color_map
|
160 |
+
)
|
161 |
+
fig.update_traces(
|
162 |
+
hovertemplate="<br>".join([
|
163 |
+
"Model: %{y}",
|
164 |
+
"GPU Energy (Wh): %{x}",
|
165 |
+
"Energy Score: %{customdata[0]}"
|
166 |
+
])
|
167 |
+
)
|
168 |
+
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
169 |
+
return fig
|
170 |
+
|
171 |
+
def get_text_generation_model_names(model_class):
|
172 |
+
df = pd.read_csv('data/energy/text_generation.csv')
|
173 |
+
if df.columns[0].startswith("Unnamed:"):
|
174 |
+
df = df.iloc[:, 1:]
|
175 |
+
if 'class' in df.columns:
|
176 |
+
df = df[df['class'] == model_class]
|
177 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
178 |
+
df['GPU Energy (Wh)'] = df['total_gpu_energy'].astype(float).apply(lambda x: f"{x:.4f}")
|
179 |
+
df['Model'] = df['model'].apply(make_link)
|
180 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
181 |
+
if 'class' in df.columns:
|
182 |
+
df['Class'] = df['class']
|
183 |
+
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
|
184 |
+
else:
|
185 |
+
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
186 |
+
df = df.sort_values(by='GPU Energy (Wh)')
|
187 |
+
return df
|
188 |
+
|
189 |
+
def update_text_generation(model_class):
|
190 |
+
plot = get_text_generation_plots(model_class)
|
191 |
+
table = get_text_generation_model_names(model_class)
|
192 |
+
return plot, table
|
193 |
+
|
194 |
+
# === Build the Gradio Interface ===
|
195 |
demo = gr.Blocks(css="""
|
196 |
.gr-dataframe table {
|
197 |
table-layout: fixed;
|
|
|
216 |
)
|
217 |
|
218 |
with gr.Tabs():
|
219 |
+
# --- Text Generation Tab with Dropdown for Model Class ---
|
220 |
with gr.TabItem("Text Generation 💬"):
|
221 |
with gr.Row():
|
222 |
with gr.Column(scale=1.3):
|
223 |
+
tg_plot = gr.Plot(get_text_generation_plots("A"))
|
224 |
with gr.Column(scale=1):
|
225 |
+
tg_table = gr.Dataframe(get_text_generation_model_names("A"), datatype="markdown")
|
226 |
+
model_class_dropdown = gr.Dropdown(choices=["A", "B", "C"],
|
227 |
+
label="Select Model Class",
|
228 |
+
value="A")
|
229 |
+
model_class_dropdown.change(fn=update_text_generation,
|
230 |
+
inputs=model_class_dropdown,
|
231 |
+
outputs=[tg_plot, tg_table])
|
232 |
+
|
233 |
with gr.TabItem("Image Generation 📷"):
|
234 |
with gr.Row():
|
235 |
with gr.Column():
|
|
|
296 |
with gr.TabItem("All Tasks 💡"):
|
297 |
with gr.Row():
|
298 |
with gr.Column():
|
|
|
299 |
plot = gr.Plot(get_all_plots())
|
300 |
with gr.Column():
|
301 |
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
|